
A Exploratory Study of @-mention in GitHub’s Pull-requests

Yang Zhang, Gang Yin, Yue Yu, Huaimin Wang
National laboratory for Parallel and Distributed Processing, National University of Defense Technology

Changsha, 410073, China
zhangyanggfkd@gmail.com, jack_nudt@163.com, yuyue_whu@foxmail.com, whm_w@163.com

Abstract—Pull-request mechanism is an outstanding social
development method in GitHub. @-mention is a social media tool
that deeply integrated with pull-request mechanism. Recently,
many research results show that social media tools can promote
the collaborative software development, but few work focuses on
the impacts of @-mention. In this paper, we conduct an
exploratory study of @-mention in pull-request based software
development, including its current situation and benefits. We
obtain some interesting findings which indicate that @-mention
is beneficial to the processing of pull-request. Our work also
proposes some possible research directions and problems of the
@-mention. It helps the developers and researchers notice the
significance of @-mention in the pull-request based software
development.

Keywords—pull-request; social media; @-mention

I. INTRODUCTION
Pull-request as implemented by GitHub1 in particular, is a

new model for collaborating on distributed software
development [1]. It attracts more and more external developers
to contribute their code and suggestions to core developers.
GitHub is a social collaborative software development
community. The platform integrates many social media tools
involving follow [2], watch [2], comment action [3] and @-
mention. It upgrades the pull-request to a socialized
development model.

@-mention allows developers to reference a specific user in
the pull-requests by simply placing a “@” symbol in front of
the username they wish to reference [4]. Compared to follow,
watch and other general social media like wikis [5], blogs [6]
and microblogs [7], @-mention usually comes from the pull-
request’s description body or the pull-request’s comments,
which makes it more deeply involved in the processing of pull-
request.

Previous work has identified the impact of social media on
software development. They found that social media plays an
increasingly important role in software engineering research
and practice [8]. It has changed the way that people collaborate
and share information [9]. In addition, social media could
enable better communication through the process of the
software system development [10]. Basically, these researches
mainly focused on the correlation between the general social
media and the overall software development. @-mention has
been proved as a significant factor in enlarging the visibility of
a post and helping initiate responses and conversations [11].
However, for the current situation and benefits of @-mention
in GitHub’s pull-requests, we still lack a comprehensive
understanding, which makes the work still at the very

beginning. There are many concerns reserved, for instance,
how popular is @-mention in the pull-requests? what kind of
differences in the complexity between the pull-requests with
@-mention and the pull-requests without @-mention? to what
extent does @-mention support developers’ collaboration in
the pull-requests?

In this paper, we conduct an exploratory study of @-
mention in GitHub’s pull-requests. By using the qualitative and
quantitative approaches, we obtain some insights of @-mention
in the pull-request based software development. Our results
indicate that, @-mention plays an important role in facilitating
the developers’ collaboration by reducing the delay time in the
processing of pull-request. However, we find that @-mention
is not widely used in the pull-requests, and the current
mechanisms in @-mention do not visibly improve the
productivity of the collaborative development. For instance, we
find that developers could not @ the suitable developers
effectively and easily when they are unfamiliar with each other.
Based on the study, we propose some possible research
directions of @-mention which might be worth being invested
to improve the pull-request based software development.

In summary, our main contributions in this paper include:

1) To the best of our knowledge, we are the first to give a
quantitative and qualitative study on @-mention in pull-
requests. This study gives some important implications for the
developers to make better use of @-mention in GitHub.

2) We analyze the correlation between the specific location
of @-mention and the cost time in the processing of pull-
request. Our observation can be used to guide the software
developers to use the @-mention in the right location.

 3) We propose some promising research directions and
problems, which would guide future software engineering tool
innovations as well as practices.

The remainder of this paper is structured as follows.
Section II describes related work. In Section III, we introduce
the related concepts and our research questions. Section IV
presents our empirical study methodology, and Section V
presents results of the study. We discuss findings based on the
study in Section VI. Threats to validity are discussed in Section
VII. We conclude the article in Section VIII.

II. RELATED WORK
In earlier studies, there are many socially related

technologies used in the software development context. Social
technologies make it possible to leverage articulated social
networks and observed code-related activity simultaneously,
which supports the type of awareness that only available to 1Https://github.com/

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.58

366

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.58

343

core developers in previous. In order to enhance the
collaboration in software development, some research
proposed the tagging [12], searchable graphs of heuristically
linked artifacts [13], and workspace awareness [14] to support
the coordination. What’s more, Louridas P [5] find that wikis
are used to support defect tracking, documentation,
requirements tracking, test case management and for the
creation of project portals. Park S et al. [6] proved that blogs
are frequently used by developers to document “how-to”
information, to discuss the release of new features and to
support requirements engineering. Riemer K and Richter A [7]
argued that decision makers should vest trust in their
employees in putting microblogging to productive use in their
group work environments. Ahmadi et al. [15] find that today’s
generation of developers frequently makes use of social media,
to augment tools in their development environments. As
mentioned from O'reilly T [16], social media tools can be
characterized by an underlying “architecture of participation”
that supports crowdsourcing as well as a many-to-many
broadcast mechanism. Storey M A et al. [8] investigated the
benefits, risks and limitations of using social media in
software development at the team, project and community
levels. Julia Kotlarsky et al. [17] find that social ties and
knowledge contribute to successful collaboration in globally
distributed information system development teams. In their
study, they made the point that human-related issues involving
rapport and transactive memory were important for
collaborative work in the software development. Black S et al.
[10] described the preliminary results of a pilot survey
conducted to collect information on social media use in global
software systems development and find that social media can
enable better communication through the software system
development process. In particular, their research results
showed that 91% of respondents said that the social media has
improve their working life.

These previous researches basically focused on the
correlation between the general social media and the overall
software development. Although Yang et al. [18] have a
primary investigation of @-mention in the Ruby on Rails, we
are not aware of any in-depth empirical study dedicated in
such claim. It inspires us to put forward a comprehensive
analysis of @-mention in the pull-requests of GitHub.

III. PRELIMINARIES & PROBLEM DEFINITION
In this section, we briefly introduce the @-mention and

propose our research questions.

A. @-mention
@2, normally read as “at”, is the meaning of “located at”

or “directed at”, especially in email addresses such as
tom@example.com (the tom located at site the example.com).
In recent year, more and more online social media, without
threaded discussions, use @ to denote a reference or a reply,
such as Facebook3, Twitter4. The feature of @-mention
enables users to directly reference others by putting a “@”
symbol before their username such as “@Tom”. Then @-
mention can automatically interpret these as links to the user’s

(a) pull-request review comments

(b) commit comments

(c) issue comments
Fig. 1. Three type of comments in the pull-requests

profile. In addition to the link function, after @-mentioning
somebody, the @-mentioned person could receive a reminder
to help himself respond immediately. In the pull-requests of
GitHub, there are three locations of @-mention: pull-request’
title, pull-request’s description body (pull-request’s body) and
pull-request’s comments. It should be mentioned that @-
mention in the pull-request’s title does not have the link
function because it is just a text, not like the others. So in our
study, we only discuss the @-mention that used in the body
and in the comments.

In fact, there are three type of comments in the pull-
requests: pull-request review comments, commit comments
and issue comments. Pull-request review comments are
comments on a portion of the diff patch like Fig.1(a). They are
applied directly to the detailed modification. Commit
comments are comments on a commit like Fig.1(b). They are
out of the pull-request review comments. Issue comments are
comments on a pull-request itself like Fig.1(c). They are out of
the commit comments.

B. Research Questions
In order to have a detailed research, we formulate research

questions within three categories: quantity related questions,
quality related questions and effect related questions.

RQ1: To what extent is @-mention used in the pull-
request paradigm?

In answer to this research question, we investigate the
distribution of @-mention in different locations and different
scenarios. Then we statistic the utilization of @-mention in
different type of pull-requests.

RQ2: What kind of differences are there between the pull-
requests with and without @-mention?

2Http://en.wikipedia.org/wiki/@

3Https://www.facebook.com/
4Https://www.twitter.com/

367344

In this question, we mainly focus on the following
characteristics of pull-requests: the number of commits, the
number of comments, and the number of participants (pull-
requests’ submitters and comments’ submitters), as well as the
handling time.

RQ3: How well do @-mention in the pull-requests support
the developers for communication? Does the specific location
of @-mention impact the processing of pull-request?

For answering the questions, we give a detailed
investigation about the impact of @-mention, as well as its
specific location on different cost time in the processing of
pull-request.

IV. METHODOLOGY
In this section, we give our datasets, the preprocessing and

the statistical measurements.

A. Datasets
Our empirical study is based on the combination of two

famous datasets: GitHub Archive and GHTorrent.

GitHub Archive5, githubarchive.org, records the public
developing activities on the Git repositories stored on GitHub.
The activities are aggregated in hourly archives, providing 18
events types involving new commits, fork, commenting,
adding members etc. The Archive encodes these events into a
Json file. The contents of the file consist of Json objects
appended one after the each. During our work, we download
and parse the Archive data from January 2013 to March 2014.
The full volume of these Archive data is approximately
160GB representing over 100 million events.

GHTorrent6, ghtorrent.org, is a scalable, offline mirror of
the data offered through the GitHub Rest API [19]. The
GHTorrent already offer data dumps of both its raw data that
stored in MongoDB (currently more than 2TB), and metadata
that stored in MySQL (currently more than 20GB) [20]. After
downloading and parsing the database dump, we can get
almost all of the development information of the repositories
in the GitHub like commits, issues, pull-requests, projects and
users. This process is very time consuming.

B. Preprocessing
In order to extract the information of @-mention from the

comments (pull-request review comments, commit comments
and issue comments), we need to preprocess our datasets. In
the GHTorrent, issue comments’ description bodies and pull-
requests’ bodies are missing. However, in the GitHub Archive,
the body information is not lost. Fig.2 shows our approaches
for solving the missing problem. First, we extract the basic in-

GitHub
Archive

GHTorrent

pull-requests bodies
& comments bodies Body dataset

pull-requests &
comments

pull-request ID

PR dataset

Research
dataset

Fig. 2. Overview of our final dataset forming approach

opened syncrhonized

merged

closed

reopened

Fig. 3. Different states in a pull-request’s lifecycle

formation of pull-requests and comments from GHTorrent to
build the basic PR dataset. Then, we extract the missing body
information from GitHub Archive to build the additional Body
dataset. Finally, we combine the two datasets with the unique
pull-request ID to build our final Research dataset. In this
dataset, the missing information of pull-requests is complete.
This is a tough and tedious process, which might be one
reason for there are few researches that investigated the @-
mention in the pull-requests.

For avoiding disturbances, we mainly analyze the data of
3587 projects (not deleted). These projects contain at least 100
pull-requests. They cover 53 different program languages. As
shown in Table I, Top-5 program languages contain 67% of
projects. Where the symbol # indicates counting.

TABLE I. THE TOP-5 PROGRAM LANGUAGES

Language JavaScript Ruby Python Java PHP
#Project 678 475 460 424 362

As shown in Fig.3, in a pull-request’s lifecycle, there are
five states: opened, synchronized, merged, closed and
reopened. When a pull-request’s processing is finished, it
must be closed but not necessarily be merged. Besides, in our
study, we consider that reopening a closed pull-request should
not be considered, since it is not a common practice and it is
not easily detectable. So we only focus on the processing of a
pull-request from its opened state to its first closed state.
Because of the above reasons, in our dataset, we select the
744684 closed pull-requests out of the total 1038117 pull-
requests. After removing the invalid data such as comment-
timestamp earlier than open-timestamp or open-timestamp
later than closed-timestamp, we obtain 724623 pull-requests.
Because there are some projects, all of their pull-requests are
submitted by one type of developers: core developers or
external developers. We filter out these unbalanced projects.
Finally, we collect 566538 closed pull-requests from 2006
projects for the later analysis and research.

C. Statistical Measurements
In our study, the statistical measurements include:

1) Cost time in pull-requests
During a typical pull-request’s processing, we divide the

cost time into 3 parts:

a)Time To Handle (TTH): The time interval between a
pull-request is opened and closed. The follows is defined for a
generic pull-requests p.

���(�) = ����	�
���(�) − ����	�
���(�) (1)

b)Delay Before Comment (DBC): The time interval
between a pull-request is opened and it receives the first
comment.

��(�) = ����	�
���������(�) − ����	�
���(�) (2) 5Http://www.githubarchive.org/
6Http://ghtorrent.org/

368345

c)Delay In Comments (DIC): The time interval between a
comment x and its next comment y.

��(�) = ����	�
�����(�) − ����	�
�����(�) (3)

2) Statistics tests
In the analysis of statistical significance between the

distributions of pull-requests with @-mention and without @-
mention, we use Mann-Whiney-Wilcoxon test, Z test and
Cliff’s δ. Those statistics tests are non-parametric statistical
hypothesis tests. They do not assume any specific distribution,
which is a suitable property for our experimental analysis.

a)Mann-Whiney-Wilcoxon (MWW) test: In the MWW test,
there are two independent samples X and Y, of size �� and ��
respectively. First, the two samples are combined into an
ascending order list where data points with identical values are
assigned the same rank. Then, the test sums the ranks of data
points in the first sample X. We denote this sum as T. By using
the MWW test, we can evaluate whether these samples are
drawn from the same distribution. The following is the
formula for computing Mann-Whitney U for X:

� = ���� + ��(����)
� − � (4)

Where U is computed to determine the p-value. If the
significance level α is 0.001, p-value less than α means the test
rejects the null hypothesis, which verifies that the two samples
have different distributions at the significance level of 0.001.

b)Z test: Z test is generally used for comparing the mean
difference of large samples (size > 30). Considering the two
samples X and Y described above, their mean values are
denoted as ! and "! , their standard deviation values are
denoted as #� and #�. Z is calculated by the following formula:

$ = %!�&!
'*�,/���*,,/�,

 (5)

Where |$| ≥ 2.58 means the difference is “very
significant”, |$| ≥ 1.96 means “significant”, |$| < 1.96
means “not significant”.

c)Cliff’s δ: Cliff’s δ is a non-parametric effect size
measure that quantifies the amount of difference between two
samples. The following is the formula for computing δ for X
and Y described above:

0 = #(%4&)�#(%7&)
���, (6)

Where |0| < 0.147 means the difference is “negligible”, |0| < 0.33 means “small”, |0| < 0.474 means “medium”,
otherwise means “large”.

V. EMPIRICAL EVALUATION
In this section, we present the results of our empirical

study. These results are reported as responses to the research
questions that were provided in Section III-B.

A. RQ1: Current situation of @-mention
As mentioned in Section III-A, @-mention is usually used

in the pull-request’s body, pull-request review comments,
commit comments or issue comments. As shown in Fig.4(a),

(a) Specific location of @-mention

(b) Specific scenario of @-mention

Fig. 4. Distribution of @-mention in the pull-requests

26% @-mention come from the pull-requests’ bodies. 74% @-
mention come from the pull-requests’ comments: issue
comments (89.2%), pull-requests review comments (10.3%),
and commit comments (0.5%). We divide the scenarios of @-
mention into two kinds: “review @” (the pull-requests’
submitters @ other developers for review) and “question @”
(the comments’ submitters @ the pull-requests’ submitters for
question). Fig.4(b) shows that 78% @-mention are used for
review. This indicates that most @-mention are used by the
pull-requests’ submitters for review. They are mainly used in
the pull-request’s body and the issue comments.

Then, we discuss the utilization of @-mention by
considering two type of pull-request contributions: internal
contributions and external contributions. Internal contributions
are pull-requests submitted by core developers (project
members). External contributions are pull-requests submitted
by external developers (not project members). It should be
noted that in our study, we consider that @-mention is used in
a pull-request, as long as the pull-request has one or more
valid @-mention operation. Similarly, we discuss the
percentage of @-mention used in the comments, as long as
one of the three type of comments has @-mention.
TABLE II. UTILIZATION OF @-MENTION IN DIFFERENT CONTRIBUTIONS

 Total Internal External
#PR Ratio #PR Ratio #PR Ratio

have comments 245989 43.4% 106296 39.0% 139693 47.6%
@ in comments 53950 21.9% 24438 23.0% 29512 21.1%

have body 395384 69.8% 177317 65.0% 218067 74.3%
@ in body 19713 5.0% 12779 7.2% 6934 3.2%
@ in total 68625 12.1% 33971 12.5% 34654 11.8%

Based on our statistics, there are 272847 internal
contributions and 293691 external contributions. Table II
shows the utilization of @-mention in different contributions.
In total, only 12.1% pull-requests have @-mention. This
indicates that @-mention is not widely used in the pull-
requests.

In our opinion, the description body is better reflecting the
purpose of a pull-request. But from our results, we find that
the percentage of @-mention used in the body is 5.0%, less
than the value of @-mention used in the comments (nearly
22.0%). The current @-mention is manually used by
developers. So we assume that if the pull-request’s submitter
is unfamiliar with the suitable reviewers, it is difficult to
decide to @ whom at the time of the pull-request be submitted.

369346

While, along with the discussion, the other participants may
help solve this “@ whom” problem. In our study, we find that
60.2% @-mentioned developers come from the internal group.
In particular, this effect is more remarkable among the
external contributions (nearly 79.0%). It proves that @-
mention is generally used to @ the internal developers. So it is
easier for the internal developers to @ the suitable reviewers
than the external developers because these internal developers
are familiar with each other. This indicates that the current
mechanisms in @-mention bring some usage problems to the
developers, especially in the external contributions.

RQ1: @-mention is not widely used in the pull-
requests. The utilization of @-mention indicates that
there may be some weakness of the current mechanisms
in @-mention, especially in the external contributions.

B. RQ2: The characteristics of pull-requests with @-mention
In this investigation, we mainly focus on the following

characteristics of pull-requests: the number of commits, the
number of comments, the number of participants and the
handling time (TTH). In order to give a clear description of
our results, we use the R statistical analysis boxplots tool in
our study. In the boxplot, there are 5 main horizontal lines.
From top to bottom, the top line indicates the max value. The
second line indicates the upper quartile (25% of data points
are above this line). The third line indicates the median value
of the dataset. The fourth line indicates the low quartile (25%
of data points are below this line). The bottom line indicates
the min value. All data points above the top line or below the
bottom line are outliers (determined by the tool).

1) The number of commits
Fig.5 shows the distribution of the number of commits in

pull-requests with @-mention and without @-mention. The
average number of commits is 4.1 (median: 1.0) for pull-
requests without @-mention, while the number is raised to 5.4
(median: 2.0) for pull-requests with @-mention. Using the
statistical test, we verify that the difference between the two
groups is statistically significant (p<0.001, z=17.8, δ=0.17).
This indicates that pull-requests with @-mention is more
likely to have more commits.

2) The number of comments
Fig.6 shows the distribution of the number of comments in

pull-requests with @-mention and without @-mention. The
average number of comments is 1.0 (median: 0) for pull-
requests without @-mention, while the number is raised to 7.2
(median: 4.0) for pull-requests with @-mention. We test and
confirm that the two distributions are significantly different
using the statistical test (p<0.001, z=131.9, δ=0.71). This
indicates that pull-requests with @-mention is more likely to
have more comments.

3) The number of participants
Fig.7 show the distribution of the number of participants in

pull-requests with @-mention and without @-mention. The
average number of participants is 1.4 (median: 1.0) for pull-
requests without @-mention, while the number is raised to 2.8
(median: 2.0) for pull-requests with @-mention. In our
statistical test, we test and confirm that the difference is statis-

Fig. 5. Number of commits and @-mention

Fig. 6. Number of comments and @-mention

Fig. 7. Number of participants and @-mention

Fig. 8. TTH of pull-requests and @-mention

tically different (p<0.001, z=202.2, δ=0.64). This indicates
that pull-requests with @-mention is more likely to have
more participants.

4) TTH
Fig.8 shows the distribution of TTH in pull-requests with

@-mention and without @-mention. The average TTH is
101.5 hours (median: 2.2 hours) for pull-requests without @-
mention, while the time is raised to 350.8 hours (median: 26.7
hours) for pull-requests with @-mention. The result of
statistical tests reveals that the difference is statistically
significant (p<0.001, z=57.2, δ=0.43). This indicates that pull-
requests with @-mention is more likely to need more time to
deal with.

In order to further investigate the impact of @-mention on
the TTH, we statistic the percentage of pull-requests with @-
mention and without @-mention in different TTH. As shown
in Fig.9, we find that with the growing of TTH, the percentage

370347

of pull-requests with @-mention is increasing. The gap of
TTH between the pull-requests with @-mention and without
@-mention is gradually reduced. If we consider the TTH as a
measurement of the pull-request’s complexity, it further
indicates that @-mention is more likely to be used in the
complex pull-requests.

Fig. 9. Percentage of pull-requests with different TTH

RQ2: @-mention is more likely to be used in those
complex pull-requests which have more commits, more
comments, more participants and longer TTH.

C. RQ3: The impact of @-mention on the processing of pull-
request

To utilize @-mention in the pull-requests effectively, we
need to find out what effect of @-mention to the cost time in
the processing of pull-request. We consider this issue from
three aspects: DBC, DIC and TTH. Furthermore, we discuss
the correlation between the location of @-mention and the
TTH of pull-requests.

1) DBC
In this study, we only discuss @-mention which is used in

the pull-request’s body. We investigate whether @-mention is
useful for reducing the delay-before-comment (DBC) in the
processing of pull-request. We consider the first comment as
the beginning of developers’ collaboration. So it is better to
have a DBC as shorter as possible.

As shown in Fig.10, the average DBC of pull-requests
with @-mention in their bodies is 37.2 hours (median: 0.8
hours). While the average DBC of pull-requests without @-
mention in their bodies is raised to 78.0 hours (median: 1.4
hours). We can find that @-mention used in the pull-request’s
body can reduce the delay time before the first comment. This
indicates that @-mention used in the pull-request’s body can
enlarge the visibility of the pull-request. It helps the @-
mentioned developers find and respond the pull-request
quickly.
2) DIC

In this study, we only discuss @-mention which is used in
the pull-request’s comments. We investigate whether @-
mention is useful for reducing the delay-in-comment (DIC) in
the processing of pull-request. A conceivable hypothesis is
that @-mention used in the comments can remind the @-
mentioned developers to respond immediately.

Fig. 10. DBC of pull-requests and @-mention

Fig. 11. DIC of pull-requests and @-mention

We collect 141484 pull-requests which have two or more
comments. Based on this dataset, we find that the average DIC
of pull-requests with @-mention in their comments is 57.2
hours (median: 1.8 hours). While the average DIC of pull-
requests without @-mention in their comments is raised to
77.5 hours (median: 2.4 hours). Fig.11 shows the DIC of pull-
requests. It shows that the pull-requests without @-mention in
their comments need a little more DIC than those pull-requests
with @-mention. This indicates that @-mention used in the
comments is useful for reminding the developers to reply. It
is a convenient tool in the developers’ conversation.

3) TTH
As mentioned above, there are 78% @-mention which are

used for review in the pull-requests. So the number of
reviewers (participants except the pull-request’s submitter) is
an important factor to illustrate the characteristic of pull-
request’s processing. In this investigation, we compare the
difference of TTH between the pull-requests with @-mention
and without @-mention when they have the same number of
reviewers.

In fact, there are many pull-requests with a minimal TTH.
Since they are closed quickly, the impact of @-mention on the
TTH is hard to analyze. In addition, the percentage of @-
mention usage is bigger in those complex pull-requests as
outlined in RQ2. In order to reduce the interference of easier
pull-requests, we only discuss the 69096 pull-requests whose
TTH are more than 5 days (this percentage of pull-requests
with @-mention is more than 20% as shown in Fig.9).

Based on our statistics, as shown in Table III, we find that
the average TTH of pull-requests with @-mention is basically
less than the value of pull-requests without @-mention. This
indicates that considering these pull-requests reviewed by the
same number of reviewers, the pull-requests with @-mention
need shorter handling time. Furthermore, with the increasing
of reviewer’s quantity, the gap of TTH is widening (maximum:
1398.3 hours, nearly 2 month). In particular, in the external
contributions, the max gap is 2180.4 hours (nearly 3 month).

<1 1-5 6-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 >100
0

10

20

30

40

50

60

70

80

90

100

TTH of Pull-requests(day)

Pe
rc

en
ta

ge
 o

f P
ul

l-r
eq

ue
st

s (
%

)

with @-mention
without @-mention

371348

This saving time is very valuable in the current software
development.

TABLE III. DIFFERENCE BETWEEN PULL-REQUESTS WITH @-MENTION
AND WITHOUT @-MENTION IN DIFFERENT NUMBER OF REVIEWERS

#Reviewers With @-mention Without @-mention
#PR Ratio Avg.

TTH(hrs)
#PR Ratio Avg.

TTH(hrs)
0 354 0.12 592.2 2609 0.88 771.6
1 4681 0.18 833.0 20838 0.82 912.9
2 6117 0.46 1018.2 7240 0.54 1237.1
3 3916 0.65 1172.3 2082 0.35 1486.6
4 1991 0.76 1510.1 632 0.24 1665.1
5 1046 0.82 1879.4 223 0.18 2068.1
6 470 0.88 2215.1 67 0.12 1726.4
7 221 0.91 2486.1 21 0.09 3757.4
8 140 0.92 2396.1 12 0.08 3784.4

4) The correlation between the location of @-mention and the
TTH

Furthermore, we analyze whether the specific location of
@-mention affect the TTH of pull-requests. From our statistics,
we find that the average TTH of pull-requests with @-mention
only used in their bodies is 77.6 hours TTH (median: 3.3
hours). While the value is raised to 171.4 hours (median: 29.8
hours) for pull-requests with @-mention only used in the pull-
request review comments. The average TTH is 450.4 hours
(median: 43.6 hours) for pull-requests with @-mention only
used in the issue comments. For the pull-requests with @-
mention only used in the commits comments, the average
TTH is 719.8 hours (median: 124.7 hours). Fig.12 shows the
TTH of pull-requests with @-mention used in different places.

We find that pull-requests with @-mention used in their
bodies have fewer TTH, because @-mention can accelerate
the beginning of developers’ collaboration as described in the
discussion of DBC. And @-mention used in the pull-request
review comments have more excellence to reduce the TTH
compared to other comments. One explanation is that the pull-
request review comments are more direct to the specific
content of the pull-requests than other comments as described
in Section II-B. This indicates that the location of @-mention
has an apparent influence to the TTH of pull-requests. More
direct to the specific content of pull-requests, more beneficial
to the processing of pull-request. This also guides the
developers where to use the @-mention to reduce more delay
time in the processing of pull-request.

Fig. 12. Prevalence of TTH for location of @-mention

RQ3: @-mention can better support the pull-
request processing by reducing the delay time in
developers’ collaboration. The locations of @-mention
have different effect to the processing of pull-request.

VI. FINDINGS
Based on the study, we draw some findings with the

expectation of supporting related researches in the future:

A. @-mention is a very useful social media tool in the pull-
requests.

As the results indicate, @-mention used in a pull-request’s
body can enlarge the visibility of the pull-request and reduce
the delay time before the first comment. @-mention used in a
pull-request’s comments can facilitate the developers’
discussion by reducing the delay time in the comments.
Furthermore, if two pull-requests reviewed by the same
number of developers, the pull-request with @-mention need
shorter handling time than the pull-requests without @-
mention. Therefore, in GitHub, @-mention plays an
important role in the pull-request based software
development.

B. Mechanisms need be provided to support developers use
@-mention.

Our study find that @-mention is an efficient tool but not
widely used in the pull-requests, especially in the external
contributions. An important reason is that the current @-
mention are manually used by the developers. It is difficult for
the developers to @ the suitable developers when they are
unfamiliar with each other. In addition, our results show that
complex pull-requests are more likely to have @-mention, but
the current mechanisms in @-mention do not support the
development collaboration well. Therefore, mechanisms for
helping developers use @-mention in the pull-requests easily
and effectively are needed. For instance, when a developer
puts an “@” in a pull-request’s comment, the platform should
automatically list some suitable developers for @-mentioning.

C. @-mentin has many possible research directions.
Through our study, we find that @-mention has following

meaningful research directions:

1)Knowing the development activities of developers. For
instance, our investigation shows that the locations of @-
mention have different effect to the pull-request’s processing.
The more direct to the pull-request’s content, the more useful
for reducing delay time. This indicates that the developers’
development activities need focus on the pull-request’s inside,
such as a specific diff patch in a commit file.

2)Mining developers’ relationship and characteristics in
GitHub. @-mention builds a social network among the
developers, which contain rich information for mining. By
analyzing this “@ network”, we can find out the developers’
relationship and characteristics. For instance, the frequently
@-mentioned developer may be the expert in the domain.

3)Assigning more suitable reviewers. In fact, the process
of assigning pull-requests to developers is done manually by
the manager. It is a time consuming process. Also the manager
can only assign one developer to review the pull-request.
According to our statistics, the percentage of assigned pull-
requests in our datasets is just 0.89%. This indicates that it is a
tedious and tough job for manager to assign the suitable
reviewers. If we consider @-mention as recommending highly
relevant reviewers to review the pull-requests, it is largely

372349

cutting down the workload of the project managers because
more developers can help do this assigning work. Furthermore,
compared to the traditional assigning method, @-mention
takes more reviewers into account. It makes the reviewing
work of pull-requests more efficient and time-saving.

VII. THREATS TO VALIDITY

A. Internal validity
Our statistical analysis uses the number of commits etc. as

measurements to verify the characteristics of pull-requests
with @-mention. Future work is needed on analyzing the
number of files changed and the code churn of a pull-request.

B. External validity
The abnormal pull-requests are the pull-requests that

contain a few simple modifications but have a long handling
time. Although we have filtered out the unbalanced projects in
our datasets, the datasets still contain some projects that have
some abnormal pull-requests. This may lead to bias in our
survey.

VIII. CONCLUSIONS
The goal of this study is to obtain a deep understanding of

@-mention in the GitHub’s pull-requests, including its current
situation and benefits. The study indicates that @-mention is a
useful social media tool for developers’ collaboration in the
pull-request based software development. However, by
statistical analysis, we find that the current mechanisms in @-
mention do not visibly improve the productivity of the
collaborative development in GitHub. More researches should
be conducted to leverage the power of @-mention in the pull-
request based software development. From the perspective of
pull-requests’ submitters (especially the external
contribution’s submitters), how to help them effectively find
suitable reviewers by using @-mention should be investigated.
According to the study results, we draw some findings with
the expectation that more practices and researches being
focused on this @-mention. We look forward to helping the
researchers and developers understand the significance of @-
mention in the pull-requests.

ACKNOWLEDGMENT
We thank Minghui Zhou, Charles X. Ling, and the APSEC

reviewers for their valuable feedback on earlier revisions of
this paper. The research is supported by the National High
Technology Research and Development Program of China
(Grant No. 2012AA011201) and the National Natural Science
Foundation of China (Grant No. 61432020 and 61472430).

REFERENCES
[1] Gousios G, Pinzger M, and van Deursen A, “An exploration of the pull-

based software development model,” in Proc. of the 36th International
Conference on Software Engineering (ICSE), 2014.

[2] Tsay J, Dabbish L, and Herbsleb J D, “Social media in transparent work
environments,” in Proc. of the 6th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE),
2013, pp. 65-72.

[3] Dabbish L, Stuart C, Tsay J, and Herbsleb J, “Social coding in GitHub:
transparency and collaboration in an open software repository,” in Proc.
of the ACM 2012 conference on Computer Supported Cooperative Work,
2012, pp. 1277-1286.

[4] Meeder B, Tam J, Kelley P G, and Cranor L F, “RT@ IWantPrivacy:
Widespread violation of privacy settings in the Twitter social network,”
in Proc. of the Web, vol. 2, 2010.

[5] Louridas P, “Using wikis in software development,” Software, vol. 23,
no. 2, pp. 88-91, 2006.

[6] Park S and Maurer F, “The role of blogging in generating a software
product vision,” in Proc. of the ICSE’09 Workshop on Cooperative and
Human Aspects on Software Engineering, 2009, pp. 74-77.

[7] Riemer K and Richter A, “Tweet inside: Microblogging in a corporate
context,” in Proc. of the 23rd Bled eConference, 2010, pp. 1-17.

[8] Storey M A, Treude C, van Deursen A, and Cheng L T, “The impact of
social media on software engineering practices and tools,” in Proc. of the
FSE/SDP workshop on Future of software engineering research, 2010,
pp. 359-364.

[9] Begel A, DeLine R, and Zimmermann T, “Social media for software
engineering,” in Proc. of the FSE/SDP workshop on Future of software
engineering research, 2010, pp. 33-38.

[10] Black S, Harrison R, and Baldwin M, “A survey of social media use in
software systems development,” in Proc. of the 1st Workshop on Web 2.0
for Software Engineering, 2010, pp. 1-5.

[11] Vega, Edgardo, Ramanujam Parthasarathy, and Josette Torres. “Where
are my tweeps?: Twitter usage at conferences,” Paper, Personal
Information, pp. 1-6, 2010.

[12] Storey M, Ryall J, Singer J, Myers D, Cheng L T, and Muller M, “How
software developers use tagging to support reminding and refinding,”
IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 470-483,
2009.

[13] Froehlich J and Dourish P, “Unifying artifacts and activities in a visual
tool for distributed software development teams,” in Proc. of the 26th
International Conference on Software Engineering (ICSE), 2004, pp.
387-396.

[14] Omoronyia I, Ferguson J, Roper M, and Wood M, “Using developer
activity data to enhance awareness during collaborative software
development,” Computer Supported Cooperative Work (CSCW), vol. 18,
no. 5, pp. 509-558, 2009.

[15] Ahmadi N, Jazayeri M, Lelli F, and Nesic S, “A survey of social
software engineering,” in Proc. of the Automated Software Engineering
Workshops, 2008, pp. 1-12.

[16] O'reilly T, “What is Web 2.0: Design patterns and business models for
the next generation of software,” Communications and Strategies, vol.
65, no. 1, pp. 17-37, 2007.

[17] Kotlarsky J and Oshri I, “Social ties, knowledge sharing and successful
collaboration in globally distributed system development projects,”
European Journal of Information Systems, vol. 14, no. 1, pp. 37-48, 2005.

[18] Yang Zhang, Gang Yin, Yue Yu and Huaimin Wang, “Investigating
Social Media in GitHub’s Pull-requests: A Case Study on Ruby on Rails,”
in Proc. of the 1th FSE’14 Workshop on Crowd Soft(CrowdSoft), 2014,
Accepted.

[19] Gousios G and Spinellis D, “GHTorrent: Github's data from a firehose,”
in Proc. of the 9th Working Conference on Mining Software Repositories
(MSR), 2012, pp. 12-21.

[20] Gousios G, Vasilescu B, Serebrenik A, and Zaidman A, “Lean
GHTorrent: GitHub data on demand,” in Proc. of the 11th Working
Conference on Mining Software Repositories (MSR), 2014, pp. 384-38.

373350

