

Investigating Social Media in GitHub’s Pull-Requests: A

Case Study on Ruby on Rails
Yang Zhang, Gang Yin, Yue Yu, Huaimin Wang

National laboratory for Parallel and Distributed Processing, National University of Defense Technology
Changsha, 410073, China

zhangyanggfkd@gmail.com, jack_nudt@163.com, yuyue_whu@foxmail.com, whm_w@163.com

ABSTRACT

In GitHub, pull-request mechanism is an outstanding social

development method by integrating with many social media. Many

studies have explored that social media has an important effect on

software development. @-mention as a typical social media, is a

useful tool in social platform. In this paper, we made a quantitative

analysis of @-mention in pull-requests of the project Ruby on

Rails. First, we make a convictive statistics of the popularity of

pull-request mechanism in GitHub. Then we investigate the current

situation of @-mention in the Ruby on Rails. Our empirical

analysis results find some insights of @-mention.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – Process metrics.

General Terms

Experimentation, Human Factors.

Keywords

Social media; GitHub; pull-request; @-mention.

1. INTRODUCTION
The pull-request based software development is a new model for

collaborating on distributed software development [1]. It makes

more and more external developers contribute their code and

suggestions to core developers. Compared with the traditional

methods such as mailing list patching [2], the pull-request is a

more efficient and socialized collaborative development model.

GitHub1 is a social collaborative software development community.

In addition to the generic tools such as automatic comparison of

project branches, the platform integrates many social media tools

involving follow [3], watch [3], comment action [4] and @-

mention for contextual discussions and in-line code-reviews.

As shown in Fig.1, after a pull-request being sent to the source

project, all developers in the GitHub have the chance to review it.

They can freely communicate by submitting comments on the pull-

request, the pull-request’s diff patches or the pull-request’s

commits [4]. In particular, when they have doubts about this pull-

request, they could reference an experienced developers for advice

by simply placing a “@” symbol in front of the username they

wish to reference [5].

Fig. 1. Developer uses @-mention to reference others

Previous work has identified the impact of @-mention on social

platform such as Twitter2. These work found that the feature of @-

mention enables users to directly reference others by putting a “@”

symbol before their screen names [6]. @-mention is a strong

predictor of information diffusion [7]. @-mention is a significant

factor in enlarging the visibility of a post and helping initiate

responses and conversations [8]. Basically, these previous

researches focused on the correlation between the @-mention and

the general social platform. Although we consider that the pull-

request is popular in GitHub, we are not aware of any empirical

study of @-mention dedicated in such claim. It inspires us to put

forward an investigation of @-mention in the pull-requests.

In this paper, we conduct an investigation of the correlation

between the @-mention and the pull-request in GitHub to find out

what the impact of social media to the pull-requests is. First, in

order to verify that the pull-request is popular in GitHub, we

obtain some insights of the popularity of the pull-request in

GitHub by using the statistical approaches. Then we perform a

detailed investigation of the @-mention in pull-requests on a

famous project called Ruby on Rails. Our results give an explicit

description of the current situation of @-mention and elicit some

important implications for the developers to make better use of @-

mention in GitHub.

The remainder of this paper is structured as follows. Section 2

describes related concepts. In Section 3, we introduce our research

questions and our empirical study methodology, and Section 4

presents results of the study. Related work and threats to validity

are discussed in Section 5 and Section 6. We conclude the article

in Section 7.

2. PRELIMINARIES
In this section, we give a brief introduction of pull-request and @-

mention.

2.1 Pull-Requests
In GitHub, the developers fork the project’s main repository and

make their own changes. When they think it is ready to submit

these changes to the main repository, they create a pull-request to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CrowdSoft’14, November 17, 2014, Hong Kong, China.

Copyright 2014 ACM 978-1-4503-3224-8/14/11 …$15.00. 1Https://github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CrowdSoft’14, November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3224-8/14/11...$15.00
http://dx.doi.org/10.1145/2666539.2666572

37

specify a local branch to be merged with a branch in the main

repository. Then, one of the internal contributors of the project

inspects the changes and pulls them to the project’s master branch.

If the pull-request does not meet the standard or needs further

improvement, the submitter of the pull-request would update his

pull-request by attaching some new commits. During such

processing, all the contributors can review and discuss in the pull-

request until it be closed.

2.2 @-Mention
In recent year, more and more online social platforms, such as

Facebook2, Twitter3, use @ to denote a reference or a reply. The

feature of @-mention enables users to directly reference others by

putting a “@” symbol before their username. Then @-mention can

automatically interpret these as links to the user’s profile. We find

that in the pull-requests of GitHub, @-mention can be found in the

pull-request’ title, pull-request’s description body (pull-request’s

body) and pull-request’s comments. In reality, @-mention in the

pull-request’s title does not have the link function because it is just

a text. So we only discuss the @-mention that used in the pull-

request’s body and the pull-request’s comments in our

investigation.

3. METHODOLOGY
In this section, we give our research questions that we focus on in

our investigation and introduce our datasets and the preprocessing.

3.1 Research Questions
In order to have a detailed research, we give the following research

questions to explore and assess the correlation between the @-

mention and the pull-request:

RQ1: What is the popularity of pull-requests in GitHub?

In answer to this research questions, we study the pull-request

related events and investigate the basic distribution of pull-

requests based on more than 10 million data from two famous

datasets.

RQ2: What is the current situation of @-mention used in the pull-

request paradigm?

For answering this research question, we investigate the

distribution of @-mention in pull-requests and analysis the

difference between the pull-requests with @-mention and the pull-

requests without @-mention on a famous project called Ruby on

Rails.

3.2 Datasets
In our investigation, we choose two famous datasets, GitHub

Archive and GHTorrent, to build our research datasets. GitHub

Archive4 is a project that maintains logs of significant actions on

the Git repositories stored on GitHub. As shown in Table I, the

development activities in GitHub are aggregated in hourly archives.

The Archive provides 18 types of events, such as new commits,

fork, commenting, adding members etc. The Archive encodes these

events into a Json file. During our work, we download and parse

the Archive data from January 2013 to March 2014. The full

volume of these Archive data is approximately 160GB. There are

over 100 million events. GHTorrent5 is a scalable, offline mirror of

the data offered through the GitHub Rest API [9]. In the

GHTorrent, there are already have more than 2TB data dumps of

both its raw data that stored in MongoDB, and more than 20GB

metadata that stored in MySQL [10]. As shown in Table II, after

downloading and parsing the database dump, we can get 20 types

of data, such as commits, issues, pull-requests, comments, projects,

which are almost all of the development information of the

repositories in the GitHub.

TABLE I. 18 TYPES OF EVENTS IN GITHUB ARCHIVE

Events

CommitCommentEvent, CreateEvent, DeleteEvent,

DownloadEvent, FollowEvent, ForkEvent, ForkApplyEvent,

GistEvent, GollumEvent,IssueCommentEvent, IssuesEvent,

MemberEvent, PublicEvent, PullRequestEvent, PushEvent,

ReleaseEvent, PullRequestReviewCommentEvent,

WatchEvent

TABLE II. 20 TYPES OF DATA IN GHTORRENT

Data

commit_comments, commit_parents, commits, followers,

issue_comments, issue_events, issue_labels, issues,

organization_members, project_commits, project_members,

projects, pull_request_comments, pull_request_commits,

pull_request_history, pull_requests, repo_labels,

repo_milestones, users, watchers

3.3 Preprocessing
During the preprocessing of our dataset, we need to extract the

information of @-mention from the pull-request’s comments. As

shown in Fig.2, the extraction work can be divided into 4 steps.

First step, we extract the pull-request’s body and comments

information by scanning the unique pull-request ID. We define

these information as the pull-request’s text. Second step, we use

the textual analysis to judge whether the pull-request’s text

contains “@” symbol. If the text contains “@”, then we go to third

step, otherwise we scan the next pull-request’s text. Third step, we

query the dataset to judge whether the “@” is a valid @-mention

operation. Because some text in back of @ are not real username

in GitHub. If it is a valid @-mention operation, then we go to the

fourth step, otherwise we scan the next pull-request’s text. Fourth

step, we insert the valid @-mention information into our MySQL

dataset for further statistics and investigation.

Start

Extract pull-request’s text
information

Textual analysis

Contain “@”?

Query the dataset

Valid @-mention?

Insert the @-mention information

Have next?

End

Y

Y

Y

N

N

N

Fig. 2. The process of extracting @-mention information

2Https://www.facebook.com/
3Https://www.twitter.com/
4Http://www.githubarchive.org/
5Http://ghtorrent.org/

38

4. INVESTIGATION RESULTS
In this section, we present the results of our investigation. These

results are reported as responses to the research questions that were

provided in Section 3.1.

4.1 RQ1: Popularity of Pull-Requests
In GitHub Archive, from January 2013 to March 2014, the

absolute number of pull-request related events (PullRequestEvent

and PullRequestReviewCommentEvent) goes up steadily to the

highest point 583239 per month, as shown in Fig.3(a). In addition

to the number increasing, as shown in Fig.3(b), the percentage of

pull-requests related events is moderate increasing, reaching the

highest point 5.5%.

2013-02 2013-04 2013-06 2013-08 2013-10 2013-12 2014-02
0

100000

200000

300000

400000

500000

600000

700000

Time(month)

N
u

m
b

e
r

o
f

P
u

ll
-r

e
q

u
e
st

s
re

la
te

d
 e

v
e
n

ts

(a) Number of pull-request related events

2013-02 2013-04 2013-06 2013-08 2013-10 2013-12 2014-02
0.032

0.036

0.04

0.044

0.048

0.052

0.056

0.06

Time(month)

P
e
rc

e
n

ta
g

e
 o

f
P

u
ll

-r
e
q

u
e
st

s
re

la
te

d
 e

v
e
n

ts
 (

%
)

(b) Percentage of pull-request related events

Fig. 3. The growth of pull-request related events

Furthermore, we investigate the quantity of the pull-requests and

the percentage of pull-request commits. For avoiding disturbances,

we mainly analyze the data of 3587 projects which receive at least

100 pull-requests and not be deleted from the latest database dump.

According to our monthly statistics, from June 2011 to March

2014, the absolute number of new pull-requests is increasing

dramatically with a few moderate fluctuations. The highest point is

62119 new pull-requests per month as shown in Fig.4(a). The

percentage of pull-requests’ commits is increasing rapidly to the

highest point of 61% and then fluctuated within the range of 55%

to 60% as shown in Fig.4(b). In recent months, nearly 60%

commits were transmitted by the pull-request mechanism

compared to the traditional share repository approach. This

indicates that pull-request mechanism is a popular model in

GitHub.

2011-02 2012-08 2012-02 2012-08 2013-02 2013-08 2014-02
0

10000

20000

30000

40000

50000

60000

70000

80000

Time(month)

N
u

m
b

e
r

o
f

P
u

ll
-r

e
q

u
e
st

s

(a) Number of pull-requests

2011-02 2011-08 2012-02 2012-08 2013-02 2013-08 2014-02
0

10

20

30

40

50

60

70

Time(month)

P
e
rc

e
n

ta
g

e
 o

f
P

u
ll

-r
e
q

u
e
st

 c
o

m
m

it
s

(%
)

(b) Percentage of pull-request commits

Fig. 4. The growth of pull-requests and pull-request commits

4.2 RQ2: Current Situation of @-Mention
For analyzing the current situation of @-mention, we do a case

study on the project called Ruby on Rails. As shown in Table III,

Ruby on Rails is a famous project which is maintained in GitHub

during its whole development.

TABLE III. BASIC INFORMATION OF RUBY ON RAILS

language stars forks pull-

requests

commits contri-

butions

Ruby 21772 7980 9129 43526 2283

In the total development period of Ruby on Rails, we investigate

the utilization of @-mention in pull-requests. After filtering the

7928 closed pull-requests from Ruby on Rails, in Fig.5, we find

that the utilization of @-mention is probably presents four stages:

1) in the early stage, from September 2010 to January 2011, the

Ruby on Rails just starts developing with pull-requests, so the

utilization of @-mention is very low; 2) in the rapid developing

stage, from January 2011 to May 2012, the development activities

of Ruby on Rails is rapidly growing, the utilization of @-mention

is fast increasing too; 3) in the stable developing stage, from May

2012 to July 2013, Ruby on Rails is in a steady phase of

development, the utilization of @-mention is basically unchanged

39

at 45%; 4) in the mature developing stage, from July 2013 to

March 2014, with the Ruby on Rails is more mature and stable, the

number of development activities for new functions or fixing bugs

is decreasing, so the utilization of @-mention is generally

decreasing too.

2010-10 2011-03 2011-08 2012-01 2012-06 2012-11 2013-04 2013-09 2014-02
0

100

200

300

400

500

Time(month)

N
u

m
b

e
r

o
f

P
u

ll
-r

e
q

u
e
st

s

0

10

20

30

40

50

60

70

80

90

100

U
ti

li
z
a
ti

o
n

 o
f

@
-m

e
n

ti
o

n
 (

%
)

Pull-requests

Pull-requests with @-mention

Utilizaion of @-mention

Fig. 5. The utilization of @-mention in Ruby on Rails

In Section 3.1, we show that @-mention is usually used in the

pull-request’s body and pull-request’s comments. As shown in

table IV, 27.6% @-mention come from the pull-requests’ bodies.

72.4% @-mention come from the pull-requests’ comments (issue

comments: 91.7%, pull-request review comments: 8.1% and

commit comments: 0.2%). This indicates that in Ruby on Rails,

@-mention are mainly used in the pull-request’s body and the

issue comments.

TABLE IV. PERCENTAGE OF @-MENTION IN DIFFERENT PLACES

Location Percentage

body 27.6%

comments 72.4%

pull-request review comments 8.1%

commit comments 0.6%

issue comments 91.3%

TABLE V. UTILIZATION OF @-MENTION IN COMMENTS AND BODY

 Total

#PR Ratio

have comments 4928 62.2%

@ in comments 1360 27.6%

have body 6767 85.4%

@ in body 812 12.0%

As shown in table V, in the 7928 closed pull-requests, there are

4928 (62.2%) pull-requests that have comments and 6767 (85.4%)

pull-requests that have body. The percentage of @-mention used in

body is 12.0%, while the value in comments is 58.2% and the

value in total is 42.2%. 27.6% of these @-mention appear in pull-

requests’ body and 72.4% appear in comments (91.7% appear in

the issue comments). This indicates that in Ruby on Rails, @-

mention is not widely used in the pull-requests and @-mention is

more likely to be used in comments than the pull-request’s body.

From our statistics, in Ruby on Rails, the pull-requests with @-

mention have 3.9 commits (median: 1.0), 6.7 comments (median:

4.0) and 3.3 participants (median: 3.0). In the opposite, the pull-

requests without @-mention have 5.5 commits (median: 1.0), 1.0

comments (median: 0.0) and 1.5 participants (median: 1.0). We

find that in Ruby on Rails, the pull-requests with @-mention are

more complex than the pull-requests without @-mention.

5. RELATED WORK
In previous work, Riemer K and Richter A [11] find that decision

makers should vest trust in their employees when they put

microblogging to productive use in their group work environments.

Louridas P [12] find that wikis can be used to support defect

tracking, documentation, requirements tracking, test case

management as well as the creation of project portals. Ahmadi et al.

[13] find that in today, developers frequently makes use of social

media to augment tools in their development environments. Park S

et al. [14] find that blogs can be frequently used by developers to

discuss the release of new features and to support requirements

engineering. O'reilly T [15] find that social media tools supports

crowdsourcing as well as a many-to-many broadcast mechanism.

Storey M A et al. [16] investigated using social media in software

development at the team, project and community levels involving

its benefits, risks and limitations. Julia Kotlarsky et al. [17] find

that human-related issues involving rapport and transactive

memory were important for collaborative work in the software

development. Black S et al. [18] find that social media can enable

better communication through the software system development

process.

6. THREATS TO VALIDITY
Our statistical analysis uses the number of commits etc. as

measurements to verify the characteristics of pull-requests with @-

mention. Future work is needed on analyzing the total handling

time of a pull-request. Because the total handling time is better

reflecting the complexity of the pull-request. In the future, we

would discuss the difference of total handling time between the

pull-requests with @-mention and without @-mention. In reality,

there are many cost time in the processing of a pull-request, such

as the delay time before the first comment and the delay time

among the comments. Future work should investigate the impact of

@-mention on these cost time. Also we consider that the different

location of @-mention might have different influence on the

processing of pull-request. In the future, we would investigate the

correlation between the location of @-mention and the processing

of pull-request.

7. CONCLUSIONS
This investigation obtains some primary understanding of @-

mention in the GitHub’s pull-requests, including the popularity of

pull-request and the basic current situation of @-mention. The

statistics results indicates that pull-request mechanism is a popular

model in GitHub. By doing a case study on Ruby on Rails, we find

that the @-mention are mainly used in the pull-request’s body and

issue comments. @-mention is not widely used and @-mention is

more likely to be used in comments than the pull-request’s body.

But the pull-requests with @-mention are more complex than the

pull-requests without @-mention. There are still some unknown

information about @-mention in the pull-requests. More detailed

researches should be conducted to make a better use of @-mention

in the pull-request based software development. In the future, we

would do some in-depth analysis of @-mention to help the

researchers and developers understand the significance of @-

mention in the pull-requests well.

40

8. ACKNOWLEDGMENT
The research is supported by the National High Technology

Research and Development Program of China (Grant No.

2012AA011201), and the National Natural Science Foundation of

China (Grant No. 61432020 and 61472430).

9. REFERENCES
[1] Gousios G, Pinzger M, and van Deursen A, “An exploration

of the pull-based software development model,” in Proc. of

the 36th International Conference on Software Engineering

(ICSE), 2014.

[2] Bird C, Gourley A, Devanbu P, et al. Mining email social

networks[C]//Proceedings of the 2006 international workshop

on Mining software repositories. ACM, 2006, pp. 137-143.

[3] Tsay J, Dabbish L, and Herbsleb J D, “Social media in

transparent work environments,” in Proc. of the 6th

International Workshop on Cooperative and Human Aspects

of Software Engineering (CHASE), 2013, pp. 65-72.

[4] Dabbish L, Stuart C, Tsay J, and Herbsleb J, “Social coding

in GitHub: transparency and collaboration in an open

software repository,” in Proc. of the ACM 2012 conference

on Computer Supported Cooperative Work, 2012, pp. 1277-

1286.

[5] Meeder B, Tam J, Kelley P G, and Cranor L F, “RT@

IWantPrivacy: Widespread violation of privacy settings in the

Twitter social network,” in Proc. of the Web, vol. 2, 2010.

[6] Storey M A, Treude C, van Deursen A, and Cheng L T, “The

impact of social media on software engineering practices and

tools,” in Proc. of the FSE/SDP workshop on Future of

software engineering research, 2010, pp. 359-364.

[7] Begel A, DeLine R, Zimmermann T. Social media for

software engineering[C]//Proceedings of the FSE/SDP

workshop on Future of software engineering research. ACM,

2010, pp. 33-38.

[8] Black S, Harrison R, and Baldwin M, “A survey of social

media use in software systems development,” in Proc. of the

1st Workshop on Web 2.0 for Software Engineering, 2010, pp.

1-5.

[9] Gousios G, Spinellis D. GHTorrent: Github's data from a

firehose[C]//Mining Software Repositories (MSR), 2012 9th

IEEE Working Conference on. IEEE, 2012: 12-21.

[10] Gousios G, Vasilescu B, Serebrenik A, and Zaidman A,

“Lean GHTorrent: GitHub data on demand,” in Proc. of the

11th Working Conference on Mining Software Repositories

(MSR), 2014, pp. 384-387.

[11] Riemer K, Richter A. Tweet inside: Microblogging in a

corporate context[J]. Proceedings of the 23rd Bled

eConference, 2010: 1-17.

[12] Louridas P. Using wikis in software development[J]. Software,

IEEE, 2006, 23(2): 88-91.

[13] Ahmadi N, Jazayeri M, Lelli F, et al. A survey of social

software engineering[C]//Automated Software Engineering-

Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM

International Conference on. IEEE, 2008: 1-12.

[14] Park S, Maurer F. The role of blogging in generating a

software product vision[C]//Proceedings of the 2009 ICSE

Workshop on Cooperative and Human Aspects on Software

Engineering. IEEE Computer Society, 2009: 74-77.

[15] O'reilly T. What is Web 2.0: Design patterns and business

models for the next generation of software[J].

Communications & strategies, 2007 (65).

[16] Storey M A, Treude C, van Deursen A, et al. The impact of

social media on software engineering practices and

tools[C]//Proceedings of the FSE/SDP workshop on Future of

software engineering research. ACM, 2010: 359-364.

[17] Kotlarsky J, Oshri I. Social ties, knowledge sharing and

successful collaboration in globally distributed system

development projects[J]. European Journal of Information

Systems, 2005, 14(1): 37-48.

[18] Black S, Harrison R, Baldwin M. A survey of social media

use in software systems development[C]//Proceedings of the

1st Workshop on Web 2.0 for Software Engineering. ACM,

2010: 1-5.

41

