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Abstract Internet-scale open source software (OSS) pro-

duction in various communities generates abundant reusable

resources for software developers. However, finding the de-

sired and mature software with keyword queries from a con-

siderable number of candidates, especially for the fresher, is

a significant challenge because current search services often

fail to understand the semantics of user queries. In this paper,

we construct a software term database (STDB) by analyzing

tagging data in Stack Overflow and propose a correlation-

based software search (CBSS) approach that performs cor-

relation retrieval based on the term relevance obtained from

STDB. In addition, we design a novel ranking method to op-

timize the initial retrieval result. We explore four research

questions in four experiments, respectively, to evaluate the

effectiveness of the STDB and investigate the performance

of the CBSS. The experiment results show that the proposed

CBSS can effectively respond to keyword-based software

searches and significantly outperforms other existing search

services at finding mature software.

Keywords software retrieval; software term database; open

source software

1 Introduction

Software reuse is essential to improving the quality and ef-

ficiency of software development [1]. With the rapid devel-

opment of the open source movement, substantial amounts
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of open source software (OSS) have been published through

the Internet [2]. For example, SourceForge has more than

460 thousand projects, GitHub has more than 30 million

repositories, and the number of projects in these communi-

ties increases dramatically every day. On the one hand, this

growth provides abundant reusable resources [3,4]; on the

other hand, the growth introduces a significant challenge for

locating desired projects among numerous candidates.

Many project hosting sites, such as SourceForge and

GitHub, have provided OSS search service to help develop-

ers identify candidate projects. General search engines, such

as Google and Bing, are alternative choices because of their

powerful query processing ability. However, the preceding

search approaches are unsuitable for search scenarios where

developers use short keyword queries to express their need

for a software project for specific functionality and applica-

tion context. For example, users may query “java ide” when

they need to write Java programs, or query “python orm”

when they program with python and prefer ORM engines to

SQL statements. The preceding example is a common phe-

nomenon found in developers who have insufficient develop-

ment experience or those who possess a few programming

skills but are new to the domain.

Search technologies applied by project hosting sites and

general-purpose search engines are mainly based on text

matching and are augmented with additional information,

such as the hyperlink structure of the Web [5–7]. However,

the problem is that some software project information may

not explicitly appear in the original description. Furthermore,

a few terms in these queries are too general, leading to the
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matching of irrelevant information. Project hosting sites and

general-purpose search engines cannot semantically and ef-

fectively understand user queries. Moreover, general-purpose

search engines usually return related hyperlinks and insuffi-

ciently support direct answers; hence, users have to extract

and conclude valuable information by themselves.

Precisely understanding the intention of users based on

search keywords is a significant task. To solve the afore-

mentioned problem, we introduce the correlation-based soft-

ware search (CBSS), a correlation based method, to improve

keyword-based software searches. Particularly, we construct

a software term database (STDB) by leveraging tag-related

data on Stack Overflow and respond to submitted queries

with a correlation search based on the STDB.

A few construction approaches for software specific word

database have been presented in recent years. For example,

Howard et al. [8] and Yang et al. [9] mined semantically sim-

ilar words in code and comments. Wang et al. [10] inferred

semantically related terms based on their proposed similarity

metric for software tags in FreeCode. Tian et al. [11] charac-

terized each word using a co-occurrence vector that captures

the co-occurrence of this word with the other words, all ex-

tracted from posts in Stack Overflow, to measure the similar-

ity of two words.

In this paper, we mined term relevance from two perspec-

tives. We first analyzed the co-occurrence of tags. By co-

occurrence, we refer to two tags that label the same ques-

tion. We utilized the co-occurrence frequency of tags and

obtained their explicit relevance. We also utilized duplicate

posts tagged by two different tag lists and obtained the ad-

ditional implicit relevance of tags with these duplicate post

links. We explored four research questions in four experi-

ments, respectively, to evaluate the effectiveness of the STDB

and investigate the performance of the CBSS.

RQ1: How well does STDB measure the relevance among

software terms?

RQ2: Does CBSS improve the search for more relevant

software projects compared with existing search services?

RQ3: Do the software projects returned by CBSS have a

high degree of maturity?

RQ4: What is the actual effect of the similar and neighbor

synergy (SNS) algorithm on the search results?

These experiments are conducted on 46,279 tags,

32,209,817 posts, and 3,089,262 post links contained in the

Stack Overflow data dump released in September 2016 and

more than 17 million projects hosted on GitHub and Oschina.

In summary, the following are the main contributions of

the present paper.

1) We effectively analyze term relevance from different

perspectives by leveraging tagging data on Stack Overflow

and build a software term database.

2) We propose the CBSS, a novel technique based on the

STDB, to improve the performance of keyword-based soft-

ware searches.

3) We design a local re-rank method through SNS to im-

prove the initial retrieval result.

4) We explore the performance of the CBSS using a com-

parative method and a user study, which illustrate that the

CBSS can benefit software development by helping users to

efficiently find mature software.

The rest of the paper is organized as follows. Section 2 in-

troduces the preliminaries of our study. Section 3 elaborates

on the CBSS. Section 4 provides details regarding the ex-

perimental setup. Section 5 presents the experimental results

and analysis. Section 6 states the threats to validity. Section 7

shows the related works. Section 8 concludes this paper and

introduces future work.

2 Keyword-based software search and its
challenges

2.1 Definition of keyword-based software search

First, distinguishing between two very different kinds of soft-

ware searches is necessary.

• Target searches In this class of searches, users provide

search engines with the name of a few software projects

and expect to obtain its description in detail. However,

this kind of search is not our main focus.

• Seeking searches In many other scenarios, users need

to find a few specific software projects by offering their

need to search engines. This is the kind of searches we

are interested in.

Moreover, web search engine users prefer to express in-

formation needs using short keyword queries [12,13]. When

users carry out seeking searches, these queries are usually

generated by users to describe what application scenario a

software project is about for application or what functional

feature a software project should provide.

With the rapid development of OSS, numerous software

projects of the same functionality have been produced. Many

ways to evaluate a software project exist; these methods uti-

lize source codes, documents, and other data in the soft-

ware development process [14–17]. However, we believe

that community feedback regarding a software project pro-
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vides a more effective evaluation [18,19]. Hence, we define

the mature software as projects that remain in current and

widespread use and received extensive discussion.

Therefore, the seeking search in keyword form for mature

software is the focus of this study.

2.2 The challenges of keyword-based search in OSS

A few existing practical keyword-based software search cases

are performed on the current service. Suppose that a devel-

oper is required to build a distributed web crawler with Java.

The developer tends to use a message queue to dispatch the

URLs of the web page to be crawled to achieve this. Then

the query “java message queue” will be searched. Figure 1

is the top result of what the developer obtained from Open-

Hub. From the figure, we find that the most common Java

message queues, RabbitMQ and ActiveMQ, are not shown in

the results. We can see that current software project hosting

platforms hardly return any popular and common software

project relevant to the query. As for the search result returned

by general search engines, a few items linked to the home

page of the relevant software exist. However, the items are

mixed with links that are irrelevant to any target software or

that are relevant to a few projects but cost more time to ana-

lyze. We find that regular search engines return search results

containing scrambled information.

Fig. 1 Top search result for “java message queue” returned by OpenHub

We conclude based on the previous analysis that the fol-

lowing challenges of the keyword-based software search for

current search services exist:

• A few terms in these queries are too general, thus

matching a large number of irrelevant information.

• Application information or functionality description of

a few software projects may be lost in its metadata. For

example, Fig. 2 shows the description of RabbitMQ in

OpenHub, from which we cannot find any word regard-

ing “message queue” that RabbitMQ usually acts as or

regarding “Java” which belongs to client programming

languages that RabbitMQ supports. Thus, it badly per-

forms if a system only matches the words typed by the

user with the text contained in software metadata.

• Criteria used to rank retrieval result are insufficient. The

text match shows that project hosting sites usually use

statistical data obtained from their own sites to rank the

retrieval result, whereas general search engines analyze

the link relation among web pages rather than software

projects. Their ranking strategies inadequately reflect

the real quality and usage status of software projects.

Fig. 2 Description of RabbitMQ in OpenHub

3 Methodology

We leverage software engineering social content and con-

struct a software term database to support the keyword-based

software search and solve the challenges described in Section

2. The overall process of the CBSS is illustrated in Fig. 3.

First, we build a software term database and collect soft-

ware metadata from the Internet. Then, provided with an ini-

tial query, three main steps should be done: query normal-

ization, including query preprocessing and synonymy substi-

tution; a correlation search comprising term expansion and

software retrieval; and local re-ranking. Finally, a list of tar-

get software that best addresses the need of the developer will

be produced. In the following subsections, we will explain the
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stages of the CBSS in detail.

3.1 Software term database building

We construct the STDB based on the tags in Stack Overflow.

We study Stack Overflow because it is a popular Q&A com-

munity that focuses on computer technology and is used by

more than a million developers to discuss computer program-

ming [20]. The tags in Stack Overflow are of high quality and

are strongly related to software engineering, making them the

best choice to build a term database of software engineering.

Fig. 3 The overall process of CBSS

The STDB comprises two parts: STDB_SY and

STDB_TR. STDB_SY contains common synonyms in soft-

ware development experience, whereas STDB_TR includes

term pairs that have explicit or implicit relevance in our set-

tings.

3.1.1 Software term database of synonyms

When users want to issue a question, they are required to

specify at least one tag that is representative of the question or

that extensively describes the domain to which their question

belongs. A tag is a keyword or label that categorizes ques-

tions; therefore, using the correct tags improves the efficiency

of the search. However, developers usually prefer to use ab-

breviations to express a few specialized vocabularies, such as

“db” for “database” and “js” for “javascript”. This conve-

nience also results in a serious problem in the query process

and usually leads to a vocabulary mismatch [21]. Therefore,

we plan to build a software term database of synonyms and

convert abbreviations, such as “db” and “js”, to their corre-

sponding master forms, “database” and “javascript” respec-

tively.

Tags in Stack Overflow are built by the community, which

is commonly known as a folksonomy. They conducted some

pre-seeding with a few dozen tags that are very obvious and

clear, and most of the present tags were created by users in a

collaborative process. Notably, not everyone has the right to

create a new tag if he or she does not reach the threshold of

reputations, which has slowly increased in Stack Overflow.

In addition, they also have a community-driven tag synonym

system, as shown in Fig. 4. Hence, STDB_SY is dumped

from Stack Overflow rather than WordNet [22]. This accu-

rately reflects what synonym developers are using in their

daily development. Currently, 2,461 synonyms are contained

in STDB_SY.

Fig. 4 Tag synonyms on Stack Overflow

3.1.2 Software term database of term relevance

3.1.2.1 Explicit relevance

We first use tag co-occurrence to construct STDB_TR. The

concept of tag co-occurrence is defined based on the common

posts that two tags have tagged in Stack Overflow. Figure 5

shows an example of a post concerning the reliability of ap-

plying Redis instead of RabbitMQ. As illustrated, this post

contains two tags: “redis” and “message-queue”. The two

tags co-occur because they appear together in the tag list of

this post.

Fig. 5 An example post in Stack Overflow
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Users are suggested to specify tags that are representative

of the question or extensively describe the domain to which

their question belongs [23,24]. Hence, the name of a soft-

ware project tends to co-occur with tags that correspond to

its features or applications scenario. Thus, tag co-occurrence

provides valuable term-relevance information.

We scanned every item in table posts and parsed the tags

if the post was a question. Let t1, t2, . . . , tk be the tag list of

a specific question. We believe that every two tags paired in

this list co-occur once. After the scan is conducted, the to-

tal incidences of co-occurrence of every two tag pairs will be

counted. In total, we collected 3,719,128 word pairs.

Finally, triples in a form, such as 〈t1, t2, values〉, will be

stored into STDB_TR. In the triple, t1, t2 indicate two tags,

and value is their relevance value. Given two tags, t1 and t2,

their relevance value is computed by the following formula:

RvCO(t1, t2) =
co-occure(t1, t2)2

countpst(t1) × countpst(t2)
. (1)

In the preceding formula, t1, t2 indicate two tags, and

RvCO(t1, t2) is their relevance value in terms of co-occurrence.

Function countpst(t) returns the number of questions tagged

by tag t, and co-occure(t1, t2) computes the number of ques-

tions tagged by t1 and t2. The numerator is the square of the

number of questions that two tags tagged together. The de-

nominator is the product of the numbers of questions that

the query item and mutual term tags, respectively. RvCO(t1, t2)

will be 1 if two tags always tag the same question, and 0 if

they tag totally different questions.

3.1.2.2 Implicit relevance

STDB_TR is also enriched by analyzing duplicate posts on

Stack Overflow. Although Stack Overflow encourages users

to “search and research” the existing knowledge base before

they post a new question, the difficulty in finding the neces-

sary information may still result in duplicate questions. Such

questions are explicitly marked as duplicates by users with

a high reputation and can be easily recognized by the [dupli-

cate] marker at the end of the question title. Figure 6 provides

an example of duplicate posts. The preceding question (ID

= 2229329) is marked as a duplicate of the question below

(ID = 139639). Both questions discuss the difference between

two SQL commands, “TRUNCATE” and “DELETE”.

The post that is marked as a duplicate is called a source

post, and the post which a duplicate post is linked to is called

a target post. Clearly, the two linked posts talk about the

same thing. Hence, the tags of a source post and the tags of

a corresponding target post of this source post are also rele-

vant. This relevance underlies the implicit relevance. Given

a source post ps and the corresponding linked target post

pt, two tag lists are present: ts〈ts1 , ts2, . . . , tsm〉 for ps, and

tp〈tp1, tp2, . . . , tpn〉 for pt (m and n indicate ps has m tags

and pt has n tags, respectively). We first compute the com-

mon tags set tm in ts and tp: tm = ts ∩ tp. With tm, we can

obtain ts_m = ts − tm and tp_m = tp − tm. For each tag

in ts_m, we built an undirected relevance link to each tag in

tp_m to make the best of information that is contained in ts_m

and tp_m. The number of times each tag pair has been linked

will be counted after all duplicate posts have been processed.

In conclusion, 131,919 tag pairs have implicit relevance.

Fig. 6 An example duplicate post in Stack Overflow

Indeed, implicit relevance can be regarded as a comple-

ment to explicit relevance, and the linked times of each two

tags can be counted into the co-occurrence of the two tags.

Hence, we prefer to update STDB_TR as follows:

Rv(t1, t2) =
(co-occure(t1, t2) + countdpl(t1, t2))2

countpst(t1) × countpst(t2)
. (2)

Function countdpl(t1, t2) returns the number of times

t1andt2 have been linked due to duplicate posts.

3.2 Software collection

We collect software projects from two sources, including

Oschina and GitHub. The projects hosted in Oschina are col-

lected by a web crawler that we developed, which is illus-

trated in Fig. 7. Oschina shows all the included projects in the

form of a list. Therefore, our crawler first crawled list pages

and downloaded the detail pages whose link is extracted from

the crawled list pages.

We collect projects hosted on GitHub by downloading a

dump of GHtorrent released on June 1, 2016, which provides

an offline mirror of the repositories of GitHub. From all the

repositories, we select the original projects that are not forked

from the other projects.

The preceding subsections concern offline work. In the fol-

lowing steps, we focus on what happens to a given query.
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3.3 Query normalization

In this step, we first apply some typical text preprocess-

ing, such as tokenize and stop words removal, on the ini-

tial query. Then we convert all the words to their lower-case

and primary form, for example, “JavaScript” to “javascript”

and “databases” to “database”. Finally, we combine neigh-

bor items in the initial query to attempt more possibility for

matching the software term database to deal with the writ-

ing style of the user. For example, “java message queue” can

also be expressed as “java-message queue”, “java message-

queue” and ”java-message-queue”. After preprocessing, we

normalize the items found in the database to their correspond-

ing master form. STDB_SY is used to achieve this goal, and

every synonym is replaced by its master form if it has one.

Fig. 7 The process of our crawler for Oschina

3.4 Correlation search

3.4.1 Term expansion

After normalization, a query can be donated as q =

t1, t2, . . . , tk where ti(1 � i � k) is a valid term after the pre-

ceding process and k is the number of valid term of query q.

The CBSS first scans STDB_TR and fetches the terms related

to each term in q to perform the correlation search. The elated

terms of ti can be denoted as Rt(ti). We assume that terms ap-

pearing in each related tag list of query terms can possibly

be the real intent for the user who typed that query. We call

such terms as mutual terms. The following formula returns

the mutual terms expanded for query q.

Mt(q) =
⋂

ti∈q
Rt(ti). (3)

3.4.2 Software retrieval

Each expanded mutual term will be retrieved in LSR with tex-

tual matching between the term and the name of the software.

This retrieval process produces the initial unsorted result. We

proposed a ranking model to rank the unsorted result, that is,

determine which one is more likely to satisfy the need of the

user. Every candidate software is assigned a rank score under

this model, which is computed by the following formula:

Rc(cs) =
∏

i=1

Rv(cs, ti). (4)

In addition, retrieved projects should be reusable software

frameworks or development tools rather than programming

languages, domain terminologies, and concepts that are ex-

tensively considered as software project but are too funda-

mental to appear in the search result. Meanwhile, we have

classified and concluded three categories of such terms: Op-

erating System, Programming Language, and Software Stan-

dard, which are shown in Table 1. The Operating System

category contains computer operating systems (e.g., Linux,

Windows) and mobile operating systems (e.g., Android,

iOS). The Programming Language category covers differ-

ent types of known programming languages, such as object-

oriented (e.g., Java), scripting (e.g., Python), and markup

(e.g., Python)). The Software Standard category refers to data

formats (e.g., JSON), protocols (e.g., HTTP), and so on.

Table 1 Filter categories and examples

Categories Examples

Operating system Linux, Android, Window, iOS

Programming language Python, Java, Ruby, XML

Software standard JSon, OAuth, HTTP, Java-EE

3.5 Local re-rank

After the refinement process, the local re-rank process is per-

formed to improve the initial retrieval result. The underlying

idea of our local re-rank algorithm is as follows: if two simi-

lar software projects rank very differently, that is, the distance

between their positions in the initial retrieval result list is rel-

atively long, one of them is out of position. Hence, adjust-

ing them to their proper positions is necessary. The following

steps are necessary to achieve this: measuring project sim-

ilarity and re-ranking the initial trivial result with our SNS

algorithm.

3.5.1 Project similarity measuring model

We apply natural language processing (NLP) and neural net-

work techniques to measure the similarity of two software

projects. Figure 8 shows that we treat a software project and

its description in Stack Overflow, which comprise the excerpt

and wiki of a tag, as a document denoted by 8. Therefore, the

problem is converted to determine the similarity between the
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two documents.

Fig. 8 The process to compute similarity between two projects

First, we use a continuous skip-gram model [25], which is

one of the state-of-the-art neural network techniques for cap-

turing word-level semantics for NLP tasks, to learn domain-

specific word embeddings from the text of PrjDescs collec-

tion. The output is a dictionary of word embeddings for each

unique word.

Word embeddings encode semantics at word-level. Cap-

turing semantics at the document level is necessary to com-

pute PrjDesc semantic relatedness. Given two PrjDescs, they

are first tokenized and converted into vectors of the word.

Meanwhile, each word in the vectors is represented as a vec-

tor by searching the word embeddings dictionary, which is

then added together and averaged to produce a PD vector for

each PrjDesc. Finally, the similarity of the two PrjDesc is

computed by the cosine similarity of their PD vectors.

3.5.2 Similar and neighbor synergy algorithm

In this paper, we introduce the SNS algorithm to re-rank the

initial retrieval P. As shows in the following, the SNS algo-

rithm comprises five main steps.

Algorithm Similar and neighbor synergy algorithm for local re-rank

Input: P is the initial retrieval result

Output: the final ranking result

1: prjPs = producePrjPs(P)

2: for (prj_i, prj_j) ∈prjPs do

3: check if prj_i (prj_j) is out of position;

4: put prj_i( prj_j) into oopPrjs or stayRanks;

5: end for

6: for prj ∈oopPrjs do

7: calculate new rank for prj;

8: end for

9: merge stayRanks and oopPrjs

10: return the merged result

Line 1 We first produce prjPs which is a collections

of projects pairs, such as (prj_m, prj_n), wherein prj_m∈P,

prj_n∈P, 0<=m<len(P) and m<n<len(P).

Line 2–5 We find candidate project pairs in prjPs with

two thresholds: threshold_sim and threshold_pos, which are

set to 0.85 and 3, respectively, in our experiment. Herein is a

mathematical relationship between threshold_pos and thresh-

old_sim: threshold_pos = �(1− threshold_sim) × t/(1− b)�,
where t and b are observation values. The parameters t and

b mean that the difference of rank position of two software

whose similarity is b should be less than t. We set the param-

eter t to 10 because we study the top 10 results. After the ob-

servation of our gold sets (GSs), we determine that b is 0.55.

Candidate project pairs are determined if their rank distance

is larger than threshold_pos, and the similarity computed by

M, which measures the similarity of two projects, is larger

than threshold_sim. In one item of the candidate project pairs,

one of the two projects is out of position if its neighbor sim-

ilarity is larger than the other one’s, Neighbor similarity of a

project is the average value of pair wise similarity between

prj and each of its neighbors. In addition, if prj_i is out of po-

sition, then the effect of prj_j is to pull down the rank of prj_i.

On the other hand, if prj_j is out of position, then the effect of

prj_i is to push up the rank of prj_j. At the end of this step, ev-

ery out-of-position project together with its affected projects

will be added to a set named oopPrjs. Simultaneously, all the

remaining projects that are not needed to adjust rank position

will be put to the set stayPrjs.

Line 6–8 All the affecting projects of an out-of-position

project will be sorted by the original rank in P, and induce

an iterative effect on this project. Whether through push-up

or pull-down effect, the affecting project will take the out-of-

position project closer by half of the current rank distance.

After completing all actions, the new rank of the out-of-

position project is determined.

Line 9 Projects in stayPrjs or oopPrjs all correspond to

a rank position. The final step is to merge the projects into

the final rank list. However, a problem occurs when merg-

ing these two sets: the desired rank position of a project in

oopPrjs may conflict with the desired rank position of the

other one in stayPrjs or oopPrjs. Our strategy is that, if the

conflicted projects are all in oopPrjs, they will be ranked by

original rank position in P, otherwise projects in oopPrjs is of

higher priority than those in stayPrjs and success to take the

conflicted rank position first.

Line 10 Finally, the merged list of target projects will be

returned as the final rank list.

4 Experimental setup

In this section, we evaluate the effectiveness of the STDB and
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CBSS for improving the performance of keyword-based soft-

ware retrieval based on four research questions (RQs). We

conduct four experiments to answer the four questions. In ad-

dition, we introduce the dataset employed in the experiments.

4.1 Research questions

We have the following research questions:

RQ1: How well does STDB measure the relevance among

software terms?

First, we want to inspect the effectiveness of the STDB.

We conduct a user study to answer this question. Users freely

determine software terms that will be used for the retrieval

of relevant terms from the STDB. Then they will be asked to

evaluate whether the relevance values correspond to the truth.

RQ2: Does CBSS improve the search for more relevant soft-

ware projects compared with existing search services?

Our second experiment compares the CBSS and general-

purpose search engines and project hosting sites in terms of

result relevance. We want to identify based on the results

whether the CBSS can indeed find more relevant software

projects. More specifically, selected general purpose search

engines includes Google, Bing and Baidu which have been

widely used in people’s daily life and SourForge, OpenHub,

GitHub, and Oschina, which are representative project host-

ing sites, are chosen in the experiment.

In addition, we collect a few typical query scenarios in the

form of keyword searches for software projects from volun-

teers and use them to assess the CBSS and other search ser-

vices. Table 2 shows all these search scenarios, which cover

three categories: development tools, reusable libraries, and

operational tools.

Table 2 Search scenarios

ID Key word Category

1 Java IDE

2 Dependency management

3 NoSQL database
Development tool

4 Java message queue

5 Java logging

6 Python machine learning

7 Game engine

8 JS visualization Reusable libraries

9 Ruby orm

10 Web spider

11 Deep learning

12 CI

13 Docker cluseter

14 Linux monitoring
Operational tool

15 http server

RQ3: Do the software projects returned by CBSS have a high

degree of maturity?

We conduct the third experiment to further study the matu-

rity of the retrieval result. The software with high usage and

attention tend to gain high usage because people are liable to

choose extensively tested and applied software. We call this

software as mature software. The ability to return more ma-

ture software rather than immature software is an important

quality for search services.

RQ4: What’s the actual effect of the SNS algorithm on the

search results?

Finally, we want to examine how the SNS algorithm affects

the search result. The experiment is conducted to compare the

difference between the results when the algorithm is applied

and the results when the algorithm is not applied in terms of

the relevance and maturity of retrieved software.

4.2 Dataset collection

In this subsection, we describe the dataset in which SDTB

and LSR are built.

We construct the STDB based on one version of Stack

Overflow data dumps, which contains the data produced from

July 31, 2008 to September 18, 2016. We also collect soft-

ware projects from Oschina and GitHub to LSR.

The data statistics are shown in Table 3. After scanning ta-

ble tags we obtain 46, 279 tags. We parse two tables, posts

and post_links, to build STDB_TR. There are 32,209,817

posts and 3,089,262 links in table posts and post_links re-

spectively. Each question or answer is referred to as a post in

Stack Overflow. We also use the APIs provided by the Stack

Exchange to build STDB_SY. We have collected more than

17 million software projects.

Table 3 Data source

Dataset Number of items

Tags 46, 279

Posts 32, 209, 817

Post links 3, 089, 262

Software projects 17, 276, 862

4.3 Evaluation metrics

To answer the preceding research questions, our evaluation

comprises three aspects: accuracy, relevance, and usability.

4.3.1 Accuracy evaluation

In the user study, volunteers are asked to evaluate how well

the STDB reflects software term relevance. The evaluation is

a Likert-type scale with a more detailed expression for each
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choice [26]. The respondents are asked to choose one of three

candidate response items, that is, our evaluation process is a

three-point Likert scale. Table 4 describes these three candi-

dates.

Table 4 Likert scale response categories for user evaluation

Scale Response category

3 Perfectly reflect term relevance

2 Partly reflect term relevance

1 Hardly reflect term relevance

Fifteen individuals with different backgrounds were in-

vited to evaluate the results. Among them, seven are master

students, three are PhD students, and five are engineers with

at least three years software development experience.

4.3.2 Relevance evaluation

Numerous measures are available to assess the performance

of a search method. One of these measures is MAP [27],

which is a common measure in ranked retrieval results. For a

single query, average precision (AP) is the average of the pre-

cision value obtained for the top k documents in retrieval re-

sults. This value is then averaged over queries to obtain MAP.

MAP is computed by the following formula:

MAP(Q) =
1
|Q|

|Q|∑

j=1

1
m

mj∑

k=1

Precision(R jk). (5)

In the equation, R jk is the set of items in the retrieved

results from the top until the Kth relevant item is reached,

whereas m indicates the total number of relevant items for

query Q j. For a given query, returning the relevant software

and ranking the relevant software in the top of the retrieval

result are important. In a Web search, as stated by studies

[27,28], people tend to prefer results located on the first page,

or at most, the first three pages. This leads to another measure

precision at k items (also known as P@k) that measures the

precision at a fixed number of retrieved results, such as 10

or 20 items. Therefore, we combine AP and P@k and use

measure AP@k which is similar to AP but is located at a

fixed level of the retrieval result rather than recall level. In

our case, we adopt the advice from the study [27] and set k to

10. That is, we will compare the top ten results returned by

each approach.

4.3.3 Usability evaluation

When we collect queries from developers, we also ask them

to recommend target software projects which will be put into

corresponding gold set after manual validation. In addition to

this, we also search on the Internet and look for eligible soft-

ware through various information platforms like BBS, blog-

ging and Q&A websites. Based on all the candidate software

projects, we construct the final gold set by considering the ac-

tual usage and community reputation and retaining the top ten

eligible software. Then these gold sets will be used to mea-

sure Recall and AP for every search service. Recall reflects

how many relevant and mature software projects are returned

in the retrieval result.

5 Results and analysis

In this section, we discuss and analyze four experiment re-

sults and their evaluations with regard to the RQs proposed

in Section 4.1.

5.1 RQ1: How well does STDB measure the relevance

among software terms?

In our user study, we collect 82 query terms from 15 par-

ticipants. Table 5 shows the Likert score distribution of this

experiment. The average score is 2.81, which means that

the STDB can effectively reflect relevance among software

terms.

Table 5 Statistics of user study result on STDB

Score Number of choice

3 (excellent) 69

2 (moderate) 11

1 (poor) 2

Average 2.81

Figure 9 shows an example and presents the relevant terms

for “java”. The central node indicates that the term “java”

and the other nodes that are connected to it represent terms

relevant to “java”. The size of the node corresponds to the

relevance values between the node and the “java” node. The

bigger the node, the more relevant a node is to the “java”

node.

Fig. 9 Relevant terms of “java”
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Result 1 STDB gets a score of 2.81 out of 3 in the user

study which means STDB can indeed effectively measure the

relevance among software terms.

5.2 RQ2: Does CBSS improve the search for more relevant

software projects?

As previously mentioned, two kinds of comparisons are con-

ducted in the first experiment to answer RQ2: (1) CBSS

vs. software project hosting sites, and (2) CBSS vs. general-

purpose search engines. Table 6 shows the comparison re-

sult of AP@10 for each search scenario. Each row in

Table 6 shows the AP@10 of each search scenario for every

search service, and the cell in which the number is in bold in-

dicates the service that performs best for this scenario. Take

query #6, which is “python machine learning”, as an exam-

ple: 7 out of 10 retrieval results of the CBSS are relevant, and

the corresponding AP@10 is 0.69, while other approaches

find relatively few relevant software projects which results in

low performance.

Table 6 AP@10 for each search systems

ID CS OS OH SF GH GL BN BD

1 0.50 0.15 0.38 0.07 0.00 0.21 0.24 0.10

2 0.51 0.10 0.26 0.03 0.76 0.12 0.12 0.12

3 0.69 0.27 0.39 0.04 0.20 0.14 0.14 0.04

4 0.73 0.46 0.17 0.24 0.54 0.20 0.14 0.00

5 0.24 0.90 0.20 0.00 0.26 0.05 0.02 0.00

6 0.69 0.00 0.27 0.08 0.10 0.05 0.00 0.10

7 0.89 0.76 0.78 0.41 1.00 0.14 0.05 0.05

8 0.43 0.05 0.26 0.03 0.24 0.50 0.27 0.04

9 0.30 0.47 0.11 0.00 0.52 0.30 0.05 0.00

10 0.64 0.20 0.34 0.57 0.68 0.17 0.07 0.05

11 0.90 0.17 0.55 0.05 0.27 0.00 0.00 0.00

12 0.57 0.20 0.31 0.00 0.30 0.01 0.00 0.10

13 0.18 0.20 0.54 0.00 0.09 0.15 0.05 0.00

14 0.26 0.29 0.29 0.19 0.64 0.11 0.10 0.00

15 0.44 0.53 0.88 0.31 0.26 0.41 0.24 0.02

Note: CS: CBSS, OS: Oschina, OH: OpenHub, GH: GitHub, GL: Google,
BN: Bing, BD: Baidu, SF: SourceForge

5.2.1 CBSS vs. software project hosting sites

In the comparison between CBSS and project hosting sites,

GitHub, SourceForge, OpenHub, and Oschina which are the

most famous among these sites, are chosen.

A two-valued judgment system was used, and the two val-

ues are “not relevant” and “relevant”. Every item in the re-

trieval results has been carefully scrutinized to determine

whether it is relevant to the query. Software projects with a

title or description that is relevant to the query but do not

have any code are viewed as “not relevant”.

Take the search scenario “java message queue” as an ex-

ample. Table 7 presents the results of each method. The re-

sults show that the search service provided by project host-

ing sites usually retrieve by matching the textual query and

text contained in the project title or description. This tends

to result in superficial matching, wherein the textual query is

contained or partly contained in the metadata of the retrieved

project; however, the relevance between them is very low. In

addition, most project hosting sites do not verify whether the

returned projects are valid or the code is not empty. All these

factors worsen the performance of these project hosting sites.

Table 7 Retrieval result for “java message queue”

Search

service
Retrieval result

CS Activemq, rabbitmq, websphere-mq, amqp, apache-kafka,
apache-camel, websphere, hornet, spring-amqp, zeromq

OS SUN Java System Message Queue, HQueue, Akka,
Appserver.io, mJMS, Open Message Queue, Android pack-
age android-ActionQueue, Jetlang, NoHttp

OH Java MQ Message Testing Tools, SAFMQ, New Java Fast
Socket Message Server, simple-mq, metis-jms, notify4j,
myqueue, ProMVC,Java_Examples, penSource .NET & Java
Messaging Service

SG Qmhandle, bacnet for java, mxa, weblogic mq, Java SMPP
Client, jlibmodbus, gmail api for java, facebook auto group
poster, beecrypt-cryptography-library, activemq browser, java
application framework for all

GH aillard/mongo-queue-java, xetorthio/rmq, awslabs/amazon-sqs-
java-messaging-lib, softlayer/softlayer-message-queue-java,
scottbyrns/javascript-message-queue, azure samples/storage-
queue-java-getting-started, li-robot/messagequeue,
jram13/message-queue, openstack-capstone/burrow-java,
uyan/javamessagequeue

Note: CS:CBSS, OS:Oschina, OH:OpenHub, GH:GitHub, SF:SourceForge

5.2.2 CBSS vs. general search engines

We select Google, Bing, and Baidu to perform the contrast

analysis and compare the CBSS and general search engines.

Results returned by general search engines are a list of URL

of web pages, and we treat a URL as relevant if it links

to the official or hosting site of a few relevant software.

Interestingly, Google and Bing, which are world-renowned

search engines, performed poorly. With regard to these gen-

eral search engines, the vertical search for a software is a dis-

advantage, and they hardly return an official site of a particu-

lar software and instead provide many posts related to queries

of users. Users may locate valuable information regarding re-

lated software after clicking and going through these posts;

however, more clicks and more time are required. Filtering

useful information from web pages by themselves is not con-

venient for users.
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Finally, Fig. 10 shows the MAP@10 of all these scenarios

for each approach. In this measure, the CBSS performed the

best and Baidu performed worst, hardly returning any rele-

vant software projects. On average, the vertical search service

provided by project hosting sites performs better than general

search engines, whereas SourceForge lags behind Google.

Fig. 10 MAP@10 of each search system

In the comparison between the CBSS and project hosting

sites, the CBSS is inferior to others in a few search scenarios.

For query #9 (“ruby orm”), the results returned by CBSS

are shown in Table 8. The software project relevant to “ruby

orm” is an ORM engine and can be simultaneously applied

to the Ruby context.

Table 8 Top ten retrieval results for “ruby orm” returned by CBSS

Rank Result Rank Result

1 ActiveRecord 6 Yaml

2 DataMapper 7 Validation

3 Sequel 8 MongoDB

4 PostgreSQL 9 SQLite

5 MySQL 10 Sinatra

Obviously, “ActiveRecord”, “DataMapper” and “Sequel”

are target projects; however, “PostgreSQL”, “MySQL” and

the others should not appear in the retrieval result. They have

been returned because of their co-occurrence or their provi-

sion of links of duplicate posts with terms, “ruby” and “orm”.

On this point, they really should be in the result list. How-

ever, their relevance is distinct from the relevant software.

The “greentDAO” is relevant to “orm” because it is a kind of

ORM, while “MySQL” is relevant to “orm” because it is usu-

ally used together with an ORM project, resulting in a drift

from the original search intention and decreasing the perfor-

mance of the search. We consider this problem as a mismatch

of intention. Although the local rank has improved this situa-

tion, more work can be conducted in the future.

Result 2 For most search scenarios, the AP@10 of CBSS

exceed other approaches and our MAP@10 is the most out-

standing one which means CBSS is more likely to find users

relevant software projects than other search approaches.

5.3 RQ3: Do the software projects returned by CBSS have

a high degree of maturity?

For each search system, we compute the average recall@top-

k on all search results with k ranging from 1 to 10. As we

can see from the experiment results shown in Table 9, our

method always performs better than other search systems on

returning mature software. Specifically, Table 10 illustrates

the recall@top-10 on each search result. CBSS performs the

best on all the search scenarios with only one exception on

query #14.

Table 9 Average recall@Top-k of each search system

Top-k CS OS OH SF GH GL BN BD

1 0.15 0.05 0.05 0.02 0.01 0.06 0.01 0.03

2 0.30 0.06 0.05 0.02 0.02 0.08 0.09 0.04

3 0.36 0.10 0.10 0.03 0.03 0.14 0.13 0.04

4 0.41 0.10 0.14 0.04 0.04 0.17 0.13 0.04

5 0.49 0.10 0.17 0.06 0.06 0.18 0.17 0.05

6 0.54 0.15 0.17 0.08 0.06 0.19 0.18 0.06

7 0.56 0.21 0.17 0.09 0.07 0.20 0.19 0.06

8 0.58 0.22 0.19 0.10 0.08 0.21 0.19 0.06

9 0.62 0.23 0.21 0.12 0.08 0.23 0.19 0.06

10 0.64 0.23 0.21 0.13 0.08 0.27 0.19 0.07

Note: CS: CBSS, OS: Oschina, OH: OpenHub, GH: GitHub, GL: Google,
BN: Bing, BD: Baidu, SF: SourceForge

Table 10 Recall@10 of each search system

ID CS OS OH SF GH GL BN BD

1 0.80 0.20 0.40 0.00 0.00 0.80 0.80 0.20

2 0.33 0.11 0.00 0.00 0.00 0.22 0.22 0.22

3 0.71 0.14 0.43 0.00 0.00 0.29 0.29 0.00

4 0.80 0.40 0.00 0.00 0.00 0.40 0.20 0.00

5 0.60 0.60 0.20 0.00 0.40 0.20 0.00 0.00

6 0.88 0.00 0.12 0.38 0.12 0.12 0.00 0.12

7 0.43 0.00 0.00 0.00 0.00 0.14 0.14 0.14

8 0.60 0.00 0.40 0.00 0.00 0.40 0.40 0.20

9 1.00 0.67 0.67 0.00 0.00 0.67 0.33 0.00

10 0.60 0.00 0.00 0.10 0.00 0.10 0.00 0.00

11 0.60 0.10 0.20 0.00 0.40 0.00 0.00 0.00

12 0.60 0.20 0.10 0.00 0.20 0.00 0.00 0.00

13 0.57 0.14 0.14 0.00 0.14 0.29 0.14 0.00

14 0.60 0.80 0.00 0.60 0.00 0.20 0.20 0.00

15 0.86 0.14 0.43 0.86 0.00 0.29 0.14 0.14

Note: CS: CBSS, OS: Oschina, OH: OpenHub, GH: GitHub, GL: Google,
BN: Bing, BD: Baidu, SF: SourceForge

We also explore the change of MAP@10 when the exper-

iment is conducted on the gold set rather than relevant set
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(RS).

When we say RS, we mean a project is included in RS

as long as it is relevant to a query and it does not have to

be a mature one. Actually, the second experiment and eval-

uation referenced this set. We compute MAP@10 on all the

search results illustrated in Fig. 11, which shows CBSS is

still far ahead of the competition. In detail, Table 11 shows

the volatility of MAP@10. CBSS gets relatively low decrease

(35.71%) with the highest MAP@10 (0.56) on RS, which in-

dicates CBSS tends to return more mature software projects

in the search result.

Fig. 11 MAP@10 of each search system

Table 11 The data volatility of MAP@10 on gold set

Search system
MAP@10

on RS

MAP@10

on GS

Decrease/%

of MAP@10

CBSS 0.53 0.34 35.84

Oschina 0.32 0.07 78.12

OpenHub 0.38 0.07 81.58

SourceForge 0.13 0.05 61.54

GitHub 0.39 0.03 92.31

Google 0.17 0.07 58.82

Bing 0.1 0.06 40.00

Baidu 0.04 0.03 25.00

Result 3 CBSS tends to return more software projects of

high usability and so that are more likely to satisfy user’s in-

tent.

5.4 RQ4: What’s the effect of SNS algorithm?

We analyze the effect of SNS on the relevance and maturity

of the search result. Figure 12 illustrates the change of the

AP@10 of each search result after the SNS algorithm is ap-

plied. In terms of relevance, nine of the 15 search results im-

proved, one remained unaffected, and five worsened, leading

to an increase of 0.05 of AP@10 on average. With regard to

maturity, six of the 15 search results improved, two remained

unaffected, and seven worsened, resulting in a decrease of

0.01 of AP@10 on average. The results show that the SNS

algorithm can improve the initial search result in terms of

relevance with a slight negative effect on the usability of the

CBSS. Therefore, SNS plays an active role in optimizing the

initial search result.

Fig. 12 The effect of SNS algorithm

Result 4 The SNS algorithm has positive effect on the initial

search result.

6 Threats to validity

This section discusses the threats to the validity of our work.

They are listed as follows:

• Search scenarios We collect search scenarios as pos-

sible as we can to measure and compare the performance of

the CBSS and other search methods. However, we may have

failed to cover a few topics. In the future, we plan to collect

search scenarios via crowdsourcing and the query logs of our

upcoming platform, which analyzes and evaluates OSS on a

worldwide scale.

• Software project consistence In the process of the

CBSS, the association between the software development

community and the knowledge sharing community depends

on the name of the project. In most situations, this associa-

tion is viable. However, in rare circumstances, this associa-

tion may result in mistakes because of name ambiguity and

differences in naming conventions. We have manually dealt

with a few mistakes encountered during our experiments. Au-

tomatic software entity disambiguating is desired in future

work.

• Comparison fairness When gathering search re-

sults from comparative search services provided by general-

purpose search engines and project hosting sites, we try to

limit the acquisition time of each site as thoroughly as possi-

ble for fair comparison. However, these systems, especially

general-purpose search engines, always look for better ser-
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vice and update their algorithms to return more satisfactory

results. Hence, an off-chance that the update of their algo-

rithms may affect the search results exists.

• User study and gold set construction As mentioned in

Section 4.3, we recruit 15 participants to assess the matu-

rity of software projects in the search result. The participants

have several years of experience in program development. We

believe that they can assign the correct scores with the assis-

tance of their experience and the related information in the

webpages. However, the participants are still at different pro-

gramming levels and may assess the same project with differ-

ent maturity scores. This threat can be minimized by group

discussion and employing more experienced experts to arbi-

trate the assessment.

7 Related work

7.1 Software search

Software search is one of the basic tasks in software engineer-

ing [29]. Numerous papers have proposed various approaches

to help users find software projects.

Bissyande et al. [30] proposed an integrated search engine

that searches for project entities and provides a uniform in-

terface with a declarative query language. Linstead et al. [31]

developed Sourcerer to take advantage of the textual aspect of

software, its structural aspects, as well as any relevant meta-

data.

Lu et al. [32] proposed an approach that expands a query

with synonyms generated from WordNet and matches the ex-

panded query with natural language phrases extracted from

source code identifiers. Nie et al. [33] reformulated the ini-

tial query by identifying software-specific expansion words

in Stack Overflow to better solve the term mismatch prob-

lem. Lv et al. [34] applied the extended Boolean model to re-

trieve code snippets and considered both API understanding

and text similarity matching. McMillan et al. [35] proposed

to consider the API calls and the data flow among those API

calls in applications instead of only the descriptions of ap-

plications to help users find similar applications and exam-

ine how high-level concepts from queries implemented in the

source code.

The preceding approaches mentioned either focused on

software search in code level or restricted the form of query.

Unlike these approaches, the CBSS in our study is focuses on

the queries in the form of keywords for software in a higher

level rather than just code snippets, such as ready-to-run soft-

ware, third-party library, and so on.

7.2 Software-specific lexical database

Measuring the relation of words is essential to accurate soft-

ware retrieval and recommendation. Sridhara et al. [36] con-

ducted a comparative study and concluded that applying

English-based semantic similarity techniques without any

customization could be detrimental to software tools. Re-

cently, a number of techniques and various measurements

have been proposed to construct software-specific word

databases.

Howard et al. [8] mined semantically similar words by

mapping the main action verb from the leading comment of

each method to the main action verb of its method signature.

Yang and Tan [9] inferred semantically related words in soft-

ware by leveraging the context of words in the comments and

code. The preceding work focused on text in source code file;

however, many software-related words are not in the source

code but are in the mass of content posted by developers and

users.

Wang et al. [37] proposed a similarity metric to infer se-

mantically related terms by considering their tagged docu-

ments tagged. In their metric, two kinds of similarity, that

is, textual and document similarity, will be computed for

each two software tags in FreeCode. The application of their

database is limited because the scale is small. Tian et al. [11]

measured the similarity of two words on the concept of word

co-occurrence and constructed a word similarity database.

They characterized each word using a co-occurrence vec-

tor that captures the co-occurrence of this word with other

words all extracted from posts in Stack Overflow. Their last

work [38] analyzed more text data from various sources. Like

Tian’s work, we also built a software term database with the

data in Stack Overflow, but we chose high-quality data and

that were specific to the software domain, that is, tags.

7.3 Social tags in Q&A sites

Numerous studies have analyzed the tags in Stack Overflow.

Bhat et al. [39] studied the effect of tagging in response time

for questions. They analyzed several factors and found that

tag-related factors, such as the popularity of tags and sub-

scribers, provide more valuable information than factors un-

related to tags. Studies [22,23,40] attempted to predict and

recommend tags for the author of posts. They predicted tags

by utilizing the content generated by users, historical tag as-

signments, and network properties in Stack Overflow. Mo

et al. [41] inferred proper tags using the label propagation

technique. They built semantic links between various URLs

and tags to address partial tagging problems. Chen et al. [42]
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presented a new approach to recommend analogical libraries

based on a knowledge base of analogical libraries mined from

tags of millions of Stack Overflow questions.

8 Conclusion and future work

We first constructed the STDB based on different perspec-

tives of the relationship between two software terms in Stack

Overflow. We also proposed the CBSS, which performs a cor-

relation search based on term relevance obtained in the STDB

to improve the keyword-based software search. We also de-

signed a novel local re-rank method to improve the initial re-

trieval result. We explored four research questions in four ex-

periments, to evaluate the effectiveness of the STDB and in-

vestigate the performance of the CBSS. The evaluation of the

empirical experiment shows that our CBSS significantly out-

performs other search services. Compared with other search

services, the CBSS can locate more mature software projects

for users that are more likely to be helpful for the develop-

ment of users.

The CBSS has been integrated to OSSEAN [2], a platform

that evaluates OSS projects based on massive amounts of data

across communities. Nevertheless, future work is necessary

to improve the CBSS and enhance the ability of OSSEAN to

search for software. First, a formal software domain knowl-

edge graph that can provide more contribution to software

engineering specific tasks should be established. Second,

given that numerous other software domain terms can be ex-

tracted from comments, post contents, and so on still exist,

the text contents in Stack Overflow should be analyzed, and

more terms and relationships should be extracted from them

to further enrich the STDB.
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