
Exploring the Use of @-mention to Assist Software
Development in GitHub

Yang Zhang, Huaimin Wang, Gang Yin, Tao Wang, Yue Yu
Key Lab. of Parallel and Distributed Computing, College of Computer, National University of Defense

Technology, Changsha, 410073, China
{yangzhang15, hmwang, jack.nudt, taowang2005, yuyue}@nudt.edu.cn

ABSTRACT
Recently, many researches propose that social media tools
can promote the collaboration among developers, which are
beneficial to the software development. Nevertheless, there
is little empirical evidence to confirm that using @-mention
has indeed a beneficial impact on the issues in GitHub. In
this paper, we analyze the data from GitHub and give some
insights on how @-mention is used in the issues (general-
issues and pull-requests). Our statistical results indicate
that, @-mention attracts more participants and tends to be
used in the difficult issues. @-mention favors the solving
process of issues by enlarging the visibility of issues and
facilitating the developers’ collaboration. In addition to this
global study, our study also build a @-network based on the
@-mention database we extract. Through the @-network, we
can mine the relationships and characteristics of developers
in GitHub’s issues.

CCS Concepts
•Human-centered computing → Collaborative and so-
cial computing; •Software and its engineering → Em-
pirical software validation;

Keywords
Issues; Social media; @-mention; GitHub

1. INTRODUCTION
GitHub is a social collaborative software development com-

munity. The platform integrates many social media tools
involving follow [1], watch [1], comment action [2] and @-
mention [3]. @-mention is a typical social media used in the
online social platform. It allows users to reference a specific
user by simply placing an “@” symbol in front of the user-
name they wish to reference [4]. Compared to follow, watch
and other general social media like wikis [5], blogs [6] and
microblogs [7], @-mention usually comes from the issue’s de-
scription body or comments in GitHub, which makes it more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Internetware ’15, November 06 2015, Wuhan, China
c© 2015 ACM. ISBN 978-1-4503-3641-3/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2875913.2875914

deeply involved in the solving process of issues.
Previous work has identified that social media tools are

widely used in the software development context. These
social media tools make it possible to leverage articulated
social networks and observed code-related activity simul-
taneously, which supports the type of awareness that only
available to core developers in previous [2]. Social medi-
a has changed the way that people collaborate and share
information [8]. Basically, these researches mainly focused
on the correlation between the general social media and the
overall software development. Other researches proved that
@-mention is a strong predictor of information diffusion [9]
and is a significant factor in enlarging the visibility of a
post and helping initiate responses and conversations [10].
Nevertheless, little effort has been done on analyzing how
@-mention is used in a population of issues and on whether
their use has any impact on the solving process of issues in
GitHub.

In this paper, we use qualitative and quantitative ap-
proaches to conduct an exploratory study of @-mention us-
age in GitHub. Our results give an explicit description of
the current usage of @-mention and elicit some important
implications for the developers to know better of @-mention
used in the issues of GitHub. In particular, we have studied
(1) how @-mention is used in GitHub’s issues (general-issues
and pull-requests) and (2) how @-mention may influence the
solving process of issues (the number of comments, the time
to solve, etc.). Our results show that there exists a sig-
nificant difference in terms of the characteristic of issues
between issues that do not have @-mention and that do.
@-mention tends to be used in the difficult issues and it can
reduce the time-to-solve as well as the time delay between
comments in case of the same difficulty of issues. Our inves-
tigation proves that @-mention has a positive impact on the
solving process of issues by enlarging the visibility of issues
and facilitating the developers’ collaboration. Besides this
global study, we also build a @-network and conduct a more
fine-grained preliminary study which aims at studying how
use @-mention to mine the relationships and characteristics
of developers in GitHub’s issues.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the related concepts and our research ques-
tions. In Section 3, we introduce our analysis and the main
results. Section 4 discusses the results and presents further
analysis steps on the topic. Section 5 reports on the related
work and threats to validity are discussed in Section 6. We
conclude the article in Section 7.

2. PRELIMINARIES & PROBLEM DEFINI-
TION

In this section, we give a brief introduction of issues and
@-mention in GitHub. Then we propose our research ques-
tions.

2.1 Issues
Open-Source Software (OSS) enables anyone to be part

of the development process as large [11]. Reporting issues
(bugs, new features or requirements) may be the most com-
mon one to contribute among the different ways (e.g. test-
ing, coding, etc.) [12]. These issues are managed by the
issue trackers, which aim at facilitating the management of
issues, by providing a feature-rich interface.

GitHub is the largest social collaborative software devel-
opment community. It is a developer-friendly environment
integrating many functionalities, including wiki, issue track-
er, and code review [13]. GitHub provides a light-weight
and flexible issue tracker, which provides the usual facilities
in issue tracking, such as filing issue tickets, labeling them,
setting the milestone and submitting the comments. In our
study, we divide the issues into two kinds, general-issues
and pull-requests. As the examples shown in Figure 1, issue
#16831 is a general-issue and issue #18936 is a pull-request.
There are some differences between the interfaces of general-
issues and pull-requests. Pull-requests as implemented by
GitHub in particular, is a new model for collaborating on
distributed software development [14]. It is also maintained
by the issue tracker in GitHub. For each opened pull-request,
an issue is opened automatically. So every pull-request is an
issue, but not every issue is a pull-request. We can consider
the pull-requests as special issues in addition to the general-
issues. Different from the general-issues, pull-requests have
other two types of comments beside general comments (ba-
sic type of comments on general-issues or pull-requests): (1)
pull-request review comments (comments on the portion of
diff patch in pull-requests) and (2) commit comments (com-
ments on the commits of pull-requests).

2.2 @-mention
@1, normally read as “at”, especially in email addresses, is

the meaning of “located at” or “directed at”. In recent year,
more and more online social platform (Facebook2, Twitter3,
etc.) use“@”to denote a reference or a reply which we called
as @-mention. The feature of @-mention enables users to di-
rectly reference others by putting an“@”symbol before their
username such as “@Jack”. Then @-mention can automati-
cally interpret these as links to the user’s profile. In addition
to the link function, after @-mentioning somebody, the @-
mentioned person could receive a reminder to help himself
respond immediately. In the issues of GitHub, @-mention
can be used in the description body or the comments of
issues. As the “@” symbol exists in issues’ title is just a
text and does not have the link function, we do not consid-
er it in our study. Figure 2 shows an example about how
@-mention be used in GitHub. In issue #21290, when zeck-
alpha reports this issue, he @ robertomiranda for review in
his issue’s description body. After robertomiranda reviewed
this new issue, he then @ dhh and guilleiguaran for advice

1http://en.wikipedia.org/wiki/@
2https://www.facebook.com/
3https://www.twitter.com/

(a) general-issues

(b) pull-requests

Figure 1: Two examples of issues in GitHub

Figure 2: An example of @-mention used in GitHub

in this issue’s comment.

2.3 Research Questions
In our investigation of @-mention, we focus on the follow-

ing research questions:
RQ1: @-mention usage. To what extent is @-mention

used in the issues of GitHub?
For answering this question, we choose a famous and large

project for our investigation. Since issues consist of general-
issues and pull-requests as described before, we respectively
analyze the usage of @-mention in general-issues and pull-
requests, including the number of use in each issue, usage
locations, usage scenarios as well as the @-mentioned devel-
opers information etc.

RQ2: @-mention influence. What kind of differences are
there between the issues with and without @-mention? Does
using @-mention influence the solving process of issues?

In answer to this question, we mainly focus on comparing
differences between issues with @-mention and without @-

mention on the basis of the following characteristics of issues:
the number of comments, the number of participants, and
the time to solve etc. Then we use the statistics tests to
verify the significance of these differences.

3. USE OF @-MENTION IN RAILS
We perform our exploratory study on a famous project

called Ruby on Rails4 (Rails), which is one of the largest and
most successful projects hosted on GitHub. Rails is also one
of the great open source projects that GitHub is using to
power its infrastructure. Rails is a web-application frame-
work that includes everything needed to create database-
backed web applications, according to the Model-View-Controller
(MVC) pattern. Table 1 shows the basic information of Rail-
s.

Table 1: The basic information of Rails
language created at watch star fork

Ruby 2008-04-11 2010 27534 11055

Our research database relies on the GitHub Rest API5,
which we can use to retrieve information on publicly ac-
cessible contents of the Rails repository. Up to August
2015, we collect 21273 issues (general-issues: 7502, pull-
requests: 13771), involving 122935 comments (general com-
ments: 93711, commit comments: 12495, pull-request review
comments: 16729) and 10094 developers.

In order to analyze the @-mention, we need to extract the
information of @-mention (e.g. the @-mentioned developer,
the @-mention location etc.) from the textual data of issues
(description body and comments). As shown in Algorithm
1, the extraction work can be divided into 4 steps: (1) First
step, for each issue in Rails, we extract its description body
and general comments information to build the basic textual
data. We define these textual data as the issueText. (2) Sec-
ond step, if this issue belongs to the pull-requests, we extract
its pull-request review comments and commit comments and
add them into the issueText, otherwise we directly go to the
third step. (3) Third step, we judge whether the issueTex-
t contains at least one “@” symbol. If the issueText con-
tains “@”, we use the regular expression method to extract
the @-mentioned developer information, i.e. the username
in the string “@username”, otherwise we scan the next is-
sue. (4) Fourth step, we query the Project Users table to
check whether the “@” is a valid @-mention operation. Be-
cause some text in back of “@” are not real username, such
as “Hongli Lai <hongli@phusion.nl>”, which is a email ad-
dress. If it is a valid @-mention operation, then we insert
the valid @-mention information into our MySQL database
for the manipulation in the subsequent phases, otherwise we
scan the next issue.

3.1 @-mention Usage
As a first step, we study the ratio of issues with at least

one @-mention operation. After parsing the issueText by
the Algorithm 1, we extract 41395 @-mention operations in
Rails project. 13784 (33%) of them are extracted from the
general-issues and 27611 (67%) are extracted from the pull-
requests. We find that, from 21273 studied issues, there are

4https://github.com/rails/rails
5http://developer.github.com/

Algorithm 1 Extracting @-mention method
Input: Issues //general-issues or pull-requests

@-mention database ← Ø
foreach issue Ia in Issues do:

descriptionText ← extractDescription(Ia)
generalCommentsText ← extractGeneralComments(Ia)
issueText ← descriptionText ∩ generalCommentsText

if Ia ∈ pull-requests:
pullRequestReviewCommentsText ← extractPullRequestReviewComments(Ia)
commitCommentsText ← extractCommitComments(Ia)
issueText ← issueText ∩ pullRequestReviewCommentsText

∩ commitCommentsText

if @ ∈ issueText:
atDeveloperData ← extractAtDeveloperData(issueText)
foreach developer Da in atDeveloperData do:

if Da ∈ Project Users:
@-mention database ← {Ia, Da}

Output: @-mention database

11124 (52%) of them containing @-mention. Specifically,
there are 3833 (51%) of the total 7502 general-issues and
7291 (53%) of the total 13771 pull-requests containing @-
mention. This result reveals that most @-mention are
used in the pull-requests, and no matter in general-
issues or in pull-requests, @-mention are used quite
a lot (nearly half).

We then study how many @-mention on average are used
in each issue (general-issue or pull-request) that has @-mention
operation. Table 2 shows the main statistical results. The
first column (#@-mention) shows the number of @-mention
operation used in each issue. According to the second colum-
n (#general-issue), third column (#pull-request) and fourth
column (#issue), we can find that the vast majority of issues
only have 1 to 3 @-mention operations (nearly 65%). This
result reveals that the frequency of each issue using
@-mention is low.

Table 2: The number of @-mention usage in issues
#@-mention #general-issue #pull-request #issue

1 1232 (32.14%) 2380 (32.64%) 3612 (32.47%)
2 796 (20.77%) 1449 (19.87%) 2245 (20.18%)
3 491 (12.81%) 908 (12.45%) 1399 (12.58%)
4 364 (9.50%) 652 (8.94%) 1016 (9.13%)
5 226 (5.90%) 435 (5.97%) 661 (5.94%)
6 157 (4.10%) 318 (4.36%) 475 (4.27%)
7 143 (3.73%) 254 (3.48%) 397 (3.57%)
8 93 (2.43%) 199 (2.73%) 292 (2.62%)
9 82 (2.14%) 140 (1.92%) 222 (2.00%)
10 64 (1.67%) 97 (1.33%) 161 (1.45%)
>10 185 (4.83%) 459 (6.30%) 644 (5.79%)

Total 3833 7291 11124

As mentioned in Section 2, @-mention is usually used in
the issue’s description body or general comments. When in
pull-requests, @-mention is also used in pull-request review
comments or commit comments. So we study the specific lo-
cation of @-mention used in issues. Figure 3-a shows that, in
general-issues, 97% @-mention are used in the general com-
ments and only 3% @-mention are used in the description
body. Figure 3-b shows that 92% @-mention are used in the
comments (general comments: 84%, commit comments: 6%,
pull-request review comments: 2%) and only 8% @-mention
are used in the description body in the pull-requests. This
result indicates that most @-mention are used in issue’s
comments rather than issue’s description body, i.e.
@-mention is more likely to be used in the conver-
sation of developers.

(a) general-issues

(b) pull-requests

Figure 3: The distribution of specific location of @-
mention used in issues

Further more, we divide the scenarios of @-mention used
in issues into two kinds, “@ submitter” and “@ reviewer”.
“@ submitter” means the reviewer participated in the issue’s
discussion @ the issue’s submitter and “@ reviewer” means
the issue’s submitter @ the reviewer. We find that 24% @-
mention are used for“@ submitter”while 76% @-mention are
used for “@ reviewer” in issues. The specific distribution in
general-issues and pull-requests are shown in Figure 4. This
result indicates that most @-mention are used by the
issue’s submitters to @ other developers for review.

As GitHub is a social coding site, among the total 10094
developers in Rails, 10057 of them are not internal project
members but also contribute their codes and suggestions to
the only 37 internal project members. The internal project
members can access to the repository of Rails and they man-
age all the issues from internal or external developers. In
our study, we find that 54% @-mentioned developers are in-
ternal project members. So each internal project member
on average can be @-mentioned 606 times, while the aver-
age time of each external developer be @-mentioned is only
2 times. Specifically, 42% @-mentioned developers are in-
ternal project members in general-issues, while the ratio is
raised to 60% in pull-requests. This result proves that @-
mention is generally used to @ the internal project
members and this target-oriented phenomenon in
pull-requests is more obvious than in general-issues.

3.2 @-mention Influence
Based on the investigation of the usage of @-mention in

issues, in this section, we try to analyze if @-mention has
a positive impact on the solving process of issues. We use
the R statistical analysis tool to find the differences between

(a) general-issues

(b) pull-requests

Figure 4: The distribution of specific scenario of @-
mention used in issues

issues with @-mention and without @-mention. We also use
statistical tests including Mann-Whiney-Wilcoxon (MWW)
test, Z test and Cliff’s δ to validate the significance of these
differences. All of these statistical tests are non-parametric
statistical hypothesis tests. They do not assume any specific
distribution, which is a suitable property for our experimen-
tal analysis.

First, we study the distribution of the number of com-
ments in issues with @-mention and without @-mention. As
shown in Figure 5-a, the average number of comments is 3.0
(median: 2.0) for general-issues without @-mention, while
the value is raised to 8.7 (median: 6.0) for general-issues
with @-mention. Figure 5-b shows that, the average num-
ber of comments is 1.1 (median: 1.0) for pull-requests with-
out @-mention, while the value is raised to 6.2 (median:
4.0) for pull-requests with @-mention. Using the statisti-
cal tests, we verify that the differences between issues with
@-mention and without @-mention are statistically signif-
icant (general-issues: p<2.2e-16, z=32.7 [very significant],
δ=0.67 [large]; pull-requests: p<2.2e-16, z=59.3 [very sig-
nificant], δ=0.72 [large]). This result indicates that issues
with @-mention are likely to have more comments
than issues without @-mention, i.e. @-mention pro-
motes the discussion of developers in issues.

Then, we study the distribution of the number of par-
ticipants in issues with @-mention and without @-mention.
As shown in Figure 6-a, the average number of participants
is 2.2 (median: 2.0) for general-issues without @-mention,
while the value is raised to 4.5 (median: 4.0) for general-
issues with @-mention. Figure 6-b shows that, the average
number of participants is 1.7 (median: 2.0) for pull-requests
without @-mention, while the value is raised to 3.7 (median:

(a) general-issues

(b) pull-requests

Figure 5: The number of comments in issues with
@-mention and without @-mention6

3.0) for pull-requests with @-mention. We test and confirm
that the distributions between issues with @-mention and
without @-mention are significantly different using the sta-
tistical tests (general-issues: p<2.2e-16, z=45.4 [very sig-
nificant], δ=0.67 [large]; pull-requests: p<2.2e-16, z=56.8
[very significant], δ=0.67 [large]). This result indicates that
issues with @-mention are likely to have more par-
ticipants than issues without @-mention, i.e. @-
mention facilitates developers to participate in the
solving process of issues.

And then we study the distribution of the time-to-solve
(time interval between a issue is opened and closed) in is-
sues with @-mention and without @-mention. In our study,
we only focus on the 20371 (95.8% of total 21273 issues)
closed issues (general-issues: 7316, pull-requests: 13235). As
shown in Figure 7-a, the average time to solve the general-
issues with @-mention is 2167.6 hours (median: 166.0 hours),
while the time is dropped to 541.5 hours (median: 11.0
hours) for general-issues without @-mention. As shown in
Figure 7-b, the average time to solve the pull-requests with

6In the boxplot, there are 5 main horizontal lines. From top
to bottom, the top line indicates the max value. The second
line indicates the upper quartile (25% of data points are
above this line). The third line indicates the median value
of the dataset. The fourth line indicates the low quartile
(25% of data points are below this line). The bottom line
indicates the min value. All data points above the top line
or below the bottom line are outliers (determined by the
tool).

(a) general-issues

(b) pull-requests

Figure 6: The number of participants in issues with
@-mention and without @-mention

@-mention is 894.3 hours (median: 21.0 hours), while the
time is dropped to 183.0 hours (median: 1.0 hours) for pull-
requests without @-mention. In our statistical tests, the re-
sults prove that these differences are statistically significant
(general-issues: p<2.2e-16, z=23.0 [very significant], δ=0.39
[medium]; pull-requests: p<2.2e-16, z=22.4 [very significan-
t], δ=0.44 [medium]). This result indicates that issues with
@-mention are likely to need more time to deal with
than issues without @-mention.

We think the number of participants is an important fac-
tor to illustrate the difficulty of issues. Difficult issue may
need longer time to solve than easy issue, i.e. difficult is-
sue may need more participants to discuss than easy is-
sue. In order to further investigate the impact of @-mention
on issues, we compare the difference of time-to-solve and
time-between-comments between issues with @-mention and
without @-mention when they have the same number of par-
ticipants. Time-between-comments reveals the time delay a-
mong the developers’ discussion. We use the Spearman’s rho
(ρ) correlation coefficient to measure the strength of mono-
tonic relationships between the considered attributes. The
values of ρ range from -1 to 1, where a perfect correlation is
represented either by a -1 or a 1, meaning that the variables
are perfectly monotonically related. On the contrary, the
closer to 0 the ρ is, the more independent the variables are.

Table 3 shows the main analysis results. The number of
participants is 1 (only the issue’s submitter), which means
there are no comments in the issue, so the average time-to-

Table 3: Difference between issues with @-mention and without @-mention in the case of different number
of participants

#participants

general-issues pull-requests
with @-mention without @-mention with @-mention without @-mention

#issue
avg. time
to solve
(hours)

avg. time
between

comments
(hours)

#issue
avg. time
to solve
(hours)

avg. time
between

comments
(hours)

#issue
avg. time
to solve
(hours)

avg. time
between

comments
(hours)

#issue
avg. time
to solve
(hours)

avg. time
between

comments
(hours)

1 40 (5%) 369.28 369.28 814 (95%) 180.18 180.18 474 (13%) 71.26 71.26 3164 (87%) 49.71 49.71
2 605 (26%) 514.53 212.99 1755 (74%) 243.95 153.67 1831 (44%) 216.66 100.19 2313 (56%) 134.19 92.70
3 1009 (60%) 963.03 253.12 659 (40%) 887.47 314.71 1848 (76%) 496.00 137.83 584 (24%) 534.07 226.32
4 711 (78%) 1634.56 277.21 201 (22%) 1961.59 438.50 1163 (87%) 1083.18 197.52 173 (13%) 1128.95 288.31
5 470 (89%) 2156.31 387.03 61 (11%) 2899.69 403.66 648 (93%) 1592.13 226.08 47 (7%) 1845.34 319.82
6 241 (91%) 4122.99 501.29 25 (9%) 4194.44 574.36 363 (94%) 1951.63 267.94 22 (6%) 2171.68 357.41
>6 521 (96%) 5253.92 373.21 24 (4%) 5720.49 510.47 583 (96%) 2409.18 211.38 22 (4%) 3006.14 269.01

ρ 1.00 0.68 1.00 0.89 1.00 0.89 1.00 0.79

(a) general-issues

(b) pull-requests

Figure 7: The time-to-solve in issues with @-
mention and without @-mention

solve is equal to the average time-between-comments. As
can be seen, the ρ values reveal that on average the time-to-
solve and the time-between-comments tend to increase to-
gether with the number of participants in general-issues and
pull-requests and it may confirm that the number of partici-
pants has an impact on the issue’s difficulty. The percentage
of issues with @-mention indicates that @-mention tend-
s to be used in the difficult issues. The time interval
of avg. time-to-solve between issues with @-mention and
without @-mentions reveals that @-mention can short-
en the time-to-solve in case of the same difficulty
of issues (same number of participants). Similarly,
the time interval of avg. time-between-comments between
issues with @-mention and without @-mention reveals that

@-mention can cut down the delay among the com-
ments, i.e. @-mention accelerates the conversation
of participants.

(a) general-issues

(b) pull-requests

Figure 8: Other characteristics of issues with @-
mention and without @-mention

We also analyze other characteristics of issues with @-
mention and issues without @-mention. As shown in Figure
8-a, we find that 60.9% general-issues with @-mention have
label, while the ratio for general-issues without @-mention is
only 26.3%. Similarly, 14.3% general-issues with @-mention
have milestone and the ratio for general-issues without @-
mention is 6.4%, 13.6% general-issues with @-mention have
assignee and the ratio for general-issues without @-mention
is 5.6%. For the state of issue (closed or open), 93.8%
general-issues with @-mention are closed and the ratio for
general-issues without @-mention is 96.5%. 3.6% general-

issues with @-mention are submitted by internal project
members and the ratio for general-issues without @-mention
is 1.8%. Figure 8-b shows the main results for pull-requests.
We find that 84.4% pull-requests with @-mention have label,
while the ratio for pull-requests without @-mention is only
44.1%. Similarly, 6.7% pull-requests with @-mention have
milestone and the ratio for pull-requests without @-mention
is 1.1%, 6.3% pull-requests with @-mention have assignee
and the ratio for pull-requests without @-mention is 0.7%.
For the state of issue, 94.8% pull-requests with @-mention
are closed and the ratio for pull-requests without @-mention
is 97.6%. 1.7% pull-requests with @-mention are submitted
by internal project members and the ratio for pull-requests
without @-mention is 1.8%. These results reveal that is-
sues with @-mention are more likely to have label,
milestone as well as assignee than issues without @-
mention. As mentioned before, issues with @-mention need
more time to solve than issues without @-mention, so the ra-
tio of closed issues in issues with @-mention is little less than
issues without @-mention.

4. DISCUSSION AND FURTHER WORK
Our study allows us to better characterize how @-mention

is used in Rails. As the results indicate, @-mention is used
quite a lot in Rails, especially in the pull-requests. Our ex-
planation is that Rails is a famous and large open source
project which attracts thousands of developers (internal or
external) to contribute and discuss online. In particular,
the mechanism of pull-requests makes the internal project
members need much resource and time to decide whether
the pull-requests should be merged into the core repository
or not. Because the pull-requests need more discussion, @-
mention is very likely to be used to involve more developers
in the solving process. The specific location and scenario
of @-mention reveal that, @-mention is more likely to be
used in the comments during the developer’s conversation
instead of in the description body of issues and most @-
mention are used for issue’s submitter @-mentioning other
reviewers. We consider it is difficult for the issue’s submitter
to @ suitable developers at the beginning of the issue’s solv-
ing process. While during the conversation in the form of
comments, with the assistance of other participants, the @-
mention problem would be solved easily. Because GitHub
provides a distributed collaborative software developmen-
t pattern, all developers want their codes and suggestions
to be accepted by the internal project members. And that
is why we find that @-mention is generally used to @ the
internal project members.

After analyzing the usage of @-mention, we further find
that issues with @-mention may have more comments, more
participants, longer time-to-solve than issues without @-
mention, which indicates that @-mention is very likely to
be used in the difficult issues. We use the number of par-
ticipants to measure the issue’s difficulty and find that @-
mention can reduce the time-to-solve and time delay be-
tween comments in the case of same difficulty of issues. We
explain that @-mention can enlarge the visibility of issues
and facilitate the developers’ discussion. We also find that
issues with @-mention are more likely to have label, mile-
stone and assignee than issues without @-mention, which
proves that @-mention help involve more participants and
has a positive impact on the solving process of issues. Since
@-mention can be used in so many ways, e.g. expression

of disagreement or notification, we cannot be sure, with-
out further analysis, whether an @-mention expresses trust,
distrust, or none of them. We need take more research to
in-depth analyze the @-mention in GitHub’s issues.

During our investigation, we believe that @-mention has
many possible research directions. In particular, @-mention
builds a social network among the developers in the solving
process of issues, which contains rich information for mining
and research. Therefore, we would like to dive deep down
into the data to learn more about how to use @-mention
for mining developers’ relationships and characteristics in
GitHub.

In our preliminary work, we aim to understand the social
relationships of developers in Rails project. We firstly con-
struct a social network based on our @-mention database,
which we called @-network. The @-network can be defined
as a directed graph G = (V,E). V represents the set of ver-
tices which are all developers participate in Rails project.
E presents a set of node pairs E(V) = {(u, v)|u, v ∈ V }.
If the node vj is @-mentioned by vi, then there is a edge
from vi to vj . For node vi, the number of edges pointing to
it is called the indegree deg−(vi) and the number of edges
starting from it represents its outdegree deg+(vi). And the
degree deg(vi) is the sum of indegree and outdegree. Figure
9 shows the @-network redrawn by Force Atlas7 algorithm.
The more time a developer be @-mentioned, the larger his
node be.

This @-network graph consists of 5059 nodes and 17706
edges. We compute the degree, indegree and outdegree of
each node. As shown in Figure 10, we find that all three
degrees distribution follow a long tail distribution [15]. The
average degree computed in the @-network is 3.5 (indegree:
1.7, outdegree: 1.8), revealing that each developer may @-

7http://gephi.org/2011/forceatlas2-the-new-version-of-our-
home-brew-layout

Figure 9: The @-network redrawn by Force Atlas
algorithm

(a) frequency∼degree (b) frequency∼indegree (c) frequency∼outdegree

Figure 10: Developer degree distribution: y-axis corresponds to the number of developers having a given
degree

Table 4: The top-10 influential developers in Rails
No. id developer followers starred #commits #comments #general-issues #pull-requests #issues page rank value

1 7468 rafaelfranca 858 89 2226 12020 9 107 126 0.041331
2 8994 tenderlove >4400 221 2106 1971 7 4 11 0.018902
3 8261 senny 307 111 923 5352 8 221 229 0.018666
4 1438 carlosantoniodasilva 592 96 696 4482 1 93 94 0.015479
5 7263 pixeltrix 154 152 223 2184 16 6 22 0.015224
6 8723 steveklabnik >2300 341 88 2983 5 63 68 0.012908
7 4635 josevalim >4000 223 1123 2874 7 6 13 0.012342
8 4289 jeremy 745 272 1152 1899 4 9 13 0.010521
9 8308 sgrif 164 6 481 2269 3 243 246 0.009154
10 3183 fxn 520 48 795 1998 4 2 6 0.008907

mention 1.8 other developers and be @-mentioned 1.7 times.
By following Surian et al. [16] and Leskovec et al. [17], the
shortest path between two nodes is computed by ignoring
the weights of the edges in the graph. The length of a path
between two nodes is simply the length of the series of nodes
between the two nodes. In our @-network, the diameter of
the largest connected component is 10 and the average short-
est path is 3.19. Surian et al. [16] studied the Sourceforge8

project hosting platform and found that the average shortest
path among project developers is 6.55, following the popu-
lar assumption of “six-degree-separation” [18]. Other study
of the Facebook social graph has concluded that individu-
als on Facebook have potentially tremendous reach with an
average shortest path of 4.7 [19]. The average shortest path
in @-network is significantly lower, which suggests that the
social media tool @-mention actually enables more collab-
oration among developers. The @-network allows for even
better reach as developer’s relationships are tighter than hu-
man’s relationships in daily life social networks.

Furthermore, we want to identify the influential develop-
ers from the @-network. We run the PageRank algorithm in
the @-network. PageRank algorithm, which is for weighting
web pages importance based on their links, has gained pop-
ularity driven by its use in the Google search engine [20].
In our study, we consider each developer as a web page and
@-mention as the URL link. There are many interactions in
our PageRank algorithm. In the initial interaction, the al-
gorithm assigns the same PageRank score to all developers.
Then subsequent interactions update these scores: the score

8http://sourceforge.net/

of a developer d is distributed to the developers that d @-
mention to; each @-mentioned developer receive 1

|Ld|
of the

score, where Ld is the set of developers that d @-mention
to. The PageRank score of a developer d at iteration i can
be computed by the following equation. Where r represents
the damping factor), T is the number of developers in our
database, K d is the set of developers that @-mention d, and
Lq is the set of developers that q @-mention to.

PR(d, i) =
1− r
T

+ r
∑
q∈Kd

PR(q, i− 1)

|Lq|

The PageRank algorithm returns a PageRank score for
every developer. We can get the top-10 influential develop-
ers in terms of their PageRank scores which are shown in
Table 4. The top-1 developer is “rafaelfranca”, who is one of
the internal project members of Rails. This developer sub-
mitted 2226 commits and 12020 comments, which indicates
that he is an active developer and has a lot of contributions
to the Rails. The top-2 developer is “tenderlove”, who is
the internal project member too. He has more than 4400
followers which reveals that he is a famous and influential
developer in GitHub. Analyzing these PageRank scores and
characteristics of developers, we find that the characteristic-
s of developers are basically consistent with the PageRank
scores, i.e. we can evaluate the contribution, activeness and
influence of developers by mining the @-network. Neverthe-
less, more research needs to be done to confirm and expand
these preliminary results.

5. RELATED WORK
Social media tools are widely used in the software develop-

ment context. These social media tools leverage articulated
social networks and observed code-related activity simulta-
neously to support the type of awareness that only avail-
able to core developers in previous [2]. In order to enhance
the collaboration in software development, some research
proposed the tagging [21], searchable graphs of heuristically
linked artifacts [22], and workspace awareness [23] to sup-
port the coordination.

Storey M A et al. [24] investigated the benefits, risks and
limitations of using social media in software development at
the team, project and community levels. Julia Kotlarsky et
al. [25] proposed that social ties and knowledge contribute
to successful collaboration in globally distributed informa-
tion system development teams. In their study, they made
the point that human-related issues involving rapport and
transactive memory were important for collaborative work
in the software development. Black S et al. [26] described
the preliminary results of a pilot survey conducted to collect
information on social media use in global software systems
development and find that social media can enable better
communication through the software system development
process. In particular, their research results showed that
91% of respondents said that the social media has improve
their working life.

As mentioned from O’reilly T [27], social media tools can
be characterized by an underlying “architecture of partici-
pation” that supports crowdsourcing as well as a many-to-
many broadcast mechanism. Ahmadi et al. [28] found that
today’s generation of developers frequently makes use of so-
cial media, to augment tools in their development environ-
ments. Park S et al. [6] proved that blogs are frequently
used by developers to document “how-to” information, to
discuss the release of new features and to support require-
ments engineering. Louridas P et al. [5] proposed that wikis
are used to support defect tracking, documentation, require-
ments tracking, test case management and for the creation
of project portals. Riemer K et al. [7] argued that deci-
sion makers should vest trust in their employees in putting
microblogging to productive use in their group work envi-
ronments. Basically, these researches mainly focused on the
correlation between the general social media and the over-
all software development. Our work is focused on analyz-
ing how the special @-mention tool influence the issues of
projects in GitHub.

@-mention, a typical social media tool used in social net-
working websites, e.g. Facebook and Twitter, allows users to
reference a specific user by simply placing an “@” symbol in
front of the username they wish to reference [4]. Yang J et al.
[9] found that @-mention is a strong predictor of information
diffusion. Lumbreras A et al. [29] proposed that @-mention
usually express some kind of close or familiar relationships
and can be treated as a positive indicator of mutual trust.
The study presented by Vega et al. [10] reported that @-
mention is a significant factor in enlarging the visibility of
a post and helping initiate response and conversations. We
had a primary investigation of @-mention used in the pull-
requests hosted in Ruby on Rails [3]. Extending this prior
work, we also conducted an exploratory study of @-mention
in pull-requests based software development, including its
current situation and benefits [30]. We have proved that
@-mention is beneficial to the processing of pull-requests in

GitHub. We believe it would be interesting to expand this
work by considering the @-mention used in total issues.

6. THREATS TO VALIDITY
Our statistical analysis mainly use the number of com-

ments, the number of participants etc. as measurements to
verify the impact of @-mention on the issues. Future work
is needed on analyzing some other characteristics of issues,
e.g. the number of files changed and the code churn in pull-
requests. In this study, we only study the issues of Ruby on
Rails project in GitHub. In the future, we plan to mitigate
this threat further by including more projects.

7. CONCLUSIONS
In this paper, we obtain a deep understanding of how

@-mention is used in the issues of GitHub, including its
usage and influence. By statistical analysis, we find that
@-mention, as a famous social media widely used in on-
line social platform, is used in Rails project quite a lot too,
especially in the pull-requests. Most @-mention are used
in the issues’ comments for submitters @-mentioning oth-
er reviewers and most @-mentioned developers are internal
project members. Furthermore, we find that issues with
@-mention are likely to have more comments, more partic-
ipants as well as longer time-to-solve than issues without
@-mention, which proves that @-mention is beneficial for
involving more collaboration and tends to be used in the
difficult issues. While in the same difficulty of issues, @-
mention can reduce the time delay during the conversation
of developers because @-mention enlarges the visibility of
issues and facilitates the developers’ discussion. And issues
with @-mention are more likely to have label, milestone as
well as assignee than issues without @-mention. Our inves-
tigation shows that @-mention has a positive impact on the
solving process of issues. Based on the @-mention database,
we also build a @-network for mining the relationships and
characteristics of developers in Rails.

Next steps will focus on expanding our investigation around
the study of @-network. We plan to extend our approach to
more projects in GitHub to see if there are significant dif-
ferences across them.

8. ACKNOWLEDGMENTS
The research is supported by the National Natural Science

Foundation of China (Grant No.61432020, 61472430 and
61502512) and the Postgraduate Innovation Fund (Grant
No.CX2015B028).

9. REFERENCES
[1] Tsay J, Dabbish L, Herbsleb J D. Social media in

transparent work environments. In Proceedings of the
6th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), pages
65-72. IEEE, 2013.

[2] Dabbish L, Stuart C, Tsay J, et al. Social coding in
GitHub: transparency and collaboration in an open
software repository. In Proceedings of the Conference on
Computer Supported Cooperative Work, pages
1277-1286. ACM, 2012.

[3] Zhang Y, Yin G, Yu Y, et al. Investigating social media
in GitHub’s pull-requests: a case study on Ruby on

Rails. In Proceedings of the 1st International Workshop
on Crowd-based Software Development Methods and
Technologies, pages 37-41. ACM, 2014.

[4] Meeder B, Tam J, Kelley P G, et al. RT@
IWantPrivacy: Widespread violation of privacy settings
in the Twitter social network. In Proceedings of the
Web, 2, pages 1-2. 2010.

[5] Louridas P. Using wikis in software development.
Software, 23(2), pages 88-91. IEEE, 2006.

[6] Park S, Maurer F. The role of blogging in generating a
software product vision. In Proceedings of the 2009
ICSE Workshop on Cooperative and Human Aspects on
Software Engineering, pages 74-77. IEEE, 2009.

[7] Riemer K, Richter A. Tweet inside: Microblogging in a
corporate context. In Proceedings of the 23rd Bled
eConference, pages 1-17. 2010.

[8] Begel A, DeLine R, Zimmermann T. Social media for
software engineering. In Proceedings of the FSE/SDP
workshop on Future of software engineering research,
pages 33-38. ACM, 2010.

[9] Yang J, Counts S. Predicting the Speed, Scale, and
Range of Information Diffusion in Twitter. In
Proceedings of ICWSM, pages 355-358. 2010.

[10] Vega E, Parthasarathy R, Torres J. Where are my
tweeps?: Twitter usage at conferences. Paper, Personal
Information, pages 1-6. 2010.

[11] Bird C, Gourley A, Devanbu P, et al. Open borders?
immigration in open source projects. In Proceedings of
the 4th International Workshop on Mining Software
Repositories, pages 6-6. IEEE, 2007.

[12] Cabot J, Canovas Izquierdo J L, Cosentino V, et al.
Exploring the use of labels to categorize issues in
Open-Source Software projects. In Proceedings of the
22nd International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 550-554.
IEEE, 2015.

[13] Thung F, Bissyand́l ↪e T F, Lo D, et al. Network
structure of social coding in github. In Proceedings of
the 17th European Conference on Software Maintenance
and Reengineering (CSMR), pages 323-326. IEEE, 2013.

[14] Gousios G, Pinzger M, and van Deursen A. An
exploration of the pull-based software development
model. In Proceedings of the 36th International
Conference on Software Engineering (ICSE), 2014.

[15] Anderson C. The long tail: how endless choice is
creating unlimited demand. Random House, 2007.

[16] Surian D, Lo D, Lim E P. Mining collaboration
patterns from a large developer network. In Proceedings
of the 17th Working Conference on Reverse
Engineering (WCRE), pages 269-273. IEEE, 2010.

[17] Leskovec J, Horvitz E. Planetary-scale views on a
large instant-messaging network. In Proceedings of the
17th International Conference on World Wide Web,
pages 915-924. ACM, 2008.

[18] Travers J, Milgram S. An experimental study of the
small world problem. Sociometry, pages 425-443. 1969.

[19] Ugander J, Karrer B, Backstrom L, et al. The
anatomy of the facebook social graph. arXiv preprint
pages 1111-4503 arXiv, 2011.

[20] Brin S, Page L. Reprint of: The anatomy of a
large-scale hypertextual web search engine. Computer

networks, 56(18), pages 3825-3833. 2012.

[21] Storey M A, Ryall J, Singer J, et al. How software
developers use tagging to support reminding and
refinding. IEEE Transactions on Software Engineering,
35(4), pages 470-483. IEEE, 2009.

[22] Froehlich J, Dourish P. Unifying artifacts and
activities in a visual tool for distributed software
development teams. In Proceedings of the 26th
International Conference on Software Engineering,
pages 387-396. IEEE, 2004.

[23] Omoronyia I, Ferguson J, Roper M, et al. Using
developer activity data to enhance awareness during
collaborative software development. Computer
Supported Cooperative Work (CSCW), 18(5-6), pages
509-558. 2009.

[24] Storey M A, Treude C, van Deursen A, et al. The
impact of social media on software engineering
practices and tools. In Proceedings of the FSE/SDP
workshop on Future of software engineering research,
pages 359-364. ACM, 2010.

[25] Kotlarsky J, Oshri I. Social ties, knowledge sharing
and successful collaboration in globally distributed
system development projects. European Journal of
Information Systems, 14(1), pages 37-48. 2005.

[26] Black S, Harrison R, Baldwin M. A survey of social
media use in software systems development. In
Proceedings of the 1st Workshop on Web 2.0 for
Software Engineering, pages 1-5. ACM, 2010.

[27] O’reilly T. What is Web 2.0: Design patterns and
business models for the next generation of software.
Communications & strategies, 65(1), pages 17-37. 2007.

[28] Ahmadi N, Jazayeri M, Lelli F, et al. A survey of
social software engineering. In Proceedings of
Automated Software Engineering-Workshops, pages
1-12. IEEE, 2008.

[29] Lumbreras A, Gavalda R. Applying trust metrics
based on user interactions to recommendation in social
networks. In Proceedings of the International
Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2012), pages 1159-1164. IEEE,
2012.

[30] Zhang Y, Yin G, Yu Y, et al. A Exploratory Study of
@-Mention in GitHub’s Pull-Requests. In Proceedings
of the 21st Asia-Pacific Software Engineering
Conference, pages 343-350. IEEE, 2014.

