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ABSTRACT

The continuous contribution from peripheral participants is
crucial for the success of open source projects. Thus, how to
identify the potential Long-Term Contributors (LTC) early
and retain them is of great importance. We propose a predic-
tion model to measure the chance for an individual to become
a LTC contributor through his capacity, willingness, and the
opportunity to contribute at the time of joining. Using data
of Rails hosted on GitHub, we find that the probability for
a new joiner to become a LTC is associated with his will-
ingness and environment. Specifically, future LTCs tend to
be more active and show more community-oriented attitude
than other joiners during their first month. This implies that
the interaction between individual’s attitude and project’s
climate are associated with the odds that an individual would
become a valuable contributor or disengage from the project.
We evaluated our prediction model by using the 10 cross-
validation method. Results show that our model archives the
mean AUC as 0.807, which is valuable for OSS projects to
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identify potential long-term contributors and adopt better
strategies to retain them for continuous contribution.
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1 INTRODUCTION

For open source projects,it is crucial for them to attract and
retain new contributors (newcomers) from the community
continuously. Prior research found that every new contribu-
tor’s participation can increase the chance of success for an
open source project at 1.24 times [15]. However, it often takes
a long time and much additional assistance for newcomers to
become productive and undertake central tasks. 80% FLOSS
projects failed not due to the quality of their products, but
insufficient long-term participants [1].

Long-term contributors (LTCs), as a crucial factor for
project’s success, their formation is influenced by different
dimensions, i.e., capacity (e.g., ability), willingness (e.g.,
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attitude), and opportunity (e.g., environment) [19]. And
in open source communities, quite a large proportion of
newcomers will not contribute to the project any more after
their first participation [3]. Previous works have explored
how newcomers join projects [18], overcome barriers [16], and
make contributions [7]. However, few emperical works have
been conducted on GitHub1 for LTC prediction. As the
biggest social coding community [9], GitHub has attracted
millions of developers and open source projects, while only a
small proportion of OSS in it achieve success. In this paper
we aim to understand what affects the chances for a new
contributor to become a LTC on GitHub projects and how
to identify the potential LTC at the early stage(the first few
months after his first engagement). This study opens new
opportunities for project leaders to recognize and retain the
potential LTCs.

We firstly perform a preliminary study on a large and pop-
ular project on GitHub, Ruby on Rails2 (Rails). We extract
various dimensions of data to comprehensively profile the
newcomers, including willingness and capacity, work burden
and social status, environment and other feedback. Then we
built a Long-term contributor prediction model to quantify
the relationships between these dimensions and the probabil-
ity that a newcomer would become a LTC. The results show
the probability is highly associated with the contributor’s
attitude and environment. Specifically, at the time of joining,
future LTCs tend to take more active role and show more
community-oriented attitude than other newcomers. They
also receive more attention from the community. Further, we
used the model to predict the LTCs and the experimental
result shows that it achieves the mean AUC as 0.807. The
highlights of our contributions are:

∙ A set of quantitative metrics are designed to measure
the developer’s diversified behavior in the first-phase
after joining in a new project;

∙ The behavior difference between LTCs and short-term
contributors(STCs) in Rails are analyzed based on the
designed metrics. We found that LTCs are much more
active and diversified than STCs in the first-session
time period(equal to 30 days);

∙ A long-term contributor prediction model is proposed
to identify the potential LTCs, which achieves high
performance;

This long-term contributor study on GitHub can assist
project leaders to identify potential LTCs and adopt bet-
ter strategies to retain them in the code contribution. With
further investigation, it may eventually lead to long-term
contributor identification tools, tailored to the GitHub com-
munity.

The rest of the paper is organized as follows. Section 2
summarizes related work. Section 3 describes our study meth-
ods, followed by our case study results (Section 4). Section 5
conclude the paper.

1https://github.com/
2https://github.com/rails/rails

2 RELATED WORKS

For open source projects, the crowds’ participation and con-
tinuous contribution are of great importance. In this section,
we review the previous works on the reason why volunteers
would join in OSS, what will affect the newcomer’s enthusi-
asm and how will they grow in these projects.

There have been rich studies on the motivation of de-
velopers to join in OSS communities. Alexander et al. [5]
categorized the motivations into internal factors and external
rewards. The typical internal factors include intrinsic motiva-
tion and altruism, and the external rewards can be expected
future returns and personal needs. Hertel [6], Roberts [14]
and Mair [10] et al. took the Linux, Apache and R commu-
nities respectively to study the volunteers’ motivations and
participation in these OSS.

Paulini et al. [13] conducted a research on what motivating
continuous participation in online innovation communities.
Their survey reveals that intrinsic motivations rated higher
than extrinsic, and the passionate participants are either new
members less than 1 month or long standing ones longer than
6 months. Ducheneaut et al. [3] found that 54% of newly
registered developers never returned to the community after
their first post in the Perl Project. Steinmacher et al. [17]
found that less than 20% of newcomers became long-term
contributors. This suggests that it is crucial for communities
to take measures to retain new comers at the early stage.

To attract and retain newcomers, some researchers started
to investigate what affects the probability that newcomers
become long-term contributors. Panciera et al. [12] found
that user’s activity patterns, even in the earliest days, had
an ability to predict future amount, quality and frequency of
activity. Zhou and Mockus [20] proposed the findings suggest
the importance of initial behaviors and experiences of new
participants. They outlined empirically-based approaches to
help the communities with the recruitment of contributors
for long-term participation and to help the participants con-
tribute more effectively. Pal et al. [11] found that by analyzing
the changes in their behavior patterns in the first few weeks,
we can distinguish experts from one another.

3 APPROACH

With the quick development of open source movement, the
social coding community GitHub is formed, huge amounts of
volunteers are attracted and millions of open source projects
are developed in it. How to identify the potential LTCs and
take measures to retain them at the early stage is quite
important for the success of OSS projects and the GitHub
community as well.

In this section, we firstly analyze the diversified behaviors
of OSS developers in GitHub, and propose a model measure
the various factors which may affect their choice for future
contribution. Based on this model we design a prediction
method using Regression Analysis to predict the potential
LTCs.



Who Will Become a Long-Term Contributor... Internetware ’18, September 16, 2018, Beijing, China

3.1 The Diversified Behaviors of
Developers

As an open source community which is distinguished from
other OSS community by its social coding characteristics,
GitHub provides watch, star, fork, pull-request and other
mechanisms for crowds to contribute. For volunteers, they can
contribute by proposing issues, posting comments, editing
documents, submitting codes and so on.

Based on the events information recorded on GitHub
API3, we collect and present the most nine common and
typical behaviors as follows:

∙ Forking (F): Developer cloned the entire Git reposi-
tory of the project. After forking, the developer owns
a copy of the original repository.

∙ Watching (W): Developer subscribed every event
that happens to this project, including branch merging,
version evolving and bug reporting.

∙ Subscribing (S): Developer subscribed issue to receive
notifications that happens to the issue.

∙ Issue Comment submitting (IC): Developer sub-
mitted comment on the issues or pull requests, which
do not reference a portion of the unified diff.

∙ PR review Comment submitting (PRC): Develop-
er submitted comment on a portion of the unified diff
in a pull request.

∙ Commit Comment submitting (CC): Developer
submitted comment directly to a commit, which is
outside of the pull request view.

∙ Issue submitting (I): Developer proposed a new issue
like a new bug or a new requirement request to want
other developers to solve.

∙ Pull Request submitting (PR): Developer sent a
pull request to a project which includes the code com-
mits.

∙ Commit submitting : Developer sent a code commit
directly to the main branch.

3.2 Study Dimensions

For a newcomer, both the internal and external factors can
affect the probability for them to become LTCs. For each
developer, we sort all his/her behavior records by the creation
time. Then we divide each developer’s behavior timeline from
first to last behavior into N equal time sessions (each time
session equals 30 days). We conduct a quantitative study
based on four dimensions: behavior diversity, willingness and
capacity, work burden and social status, environment and
feedback.

3.2.1 Behavior Diversity. The behavior diversity of a given
developer represents that how many features or mechanisms
he/she experienced and how many types of tasks he contribute
in the OSS project. For a developer, the more diversity he/she
act , the more intensive he/she get to know the project, and
the more probability he/she may contribute continuous.

3https://developer.github.com/v3/activity/events/types/

C PR I IC PRC CC F W S

C 0 2 4 5 5 5 6 6 6

PR 2 0 4 5 5 5 6 6 6

I 4 4 0 5 5 5 6 6 6

IC 5 5 5 0 2 2 5 5 5

PRC 5 5 5 2 0 2 5 5 5

CC 5 5 5 2 2 0 5 5 5

F 6 6 6 5 5 5 0 4 4

W 6 6 6 5 5 5 4 0 2

S 6 6 6 5 5 5 4 2 0

Behavior distance matrix

Figure 2: The behavior distance matrix for calculat-
ing developer’s behavior diversity. C: Commit; PR:
Pull request; I: Issue; IC: Issue comment; PRC: PR
review comment; CC: Commit comment; F: Fork; W:
Watch; S: Subscribed.

Based on the method proposed by Karumur et al. [8], we
build the behavior diversity metric in a manner that is tied
to a hierarchical taxonomy of behaviors, i.e., a taxonomy
that is built specifically to group similar behaviors together
and to separate dissimilar behaviors. To form this taxonomy,
three of the authors firstly clustered the diversified behavior
separately into as many clusters as would make sense to them.
Then they discussed together on their clusters to reach an
agreement. In the end, we get a hierarchy that depicted that
relationship between various behavior types on GitHub as
shown in Figure 1. In this hierarchy, all distinct behavior
types appear as leaf nodes. Each internal node represents
a hypothetical behavior type that encompasses all behavior
types of its child nodes.

Based on the behavior hierarchy, we build a behavior
distance matrix D to quantify the amount of dissimilarity
between any two leaf nodes. In this matrix, the value of
dissimilarity between two leaf nodes is simply the number
of edges in the shortest path connecting them. Let 𝐷𝑖𝑗 de-
note the dissimilarity between leaf nodes i and j, which also
represents the ij -th element of the matrix D.

We measure the behavior diversity a developer d as the
normalized mean value of pair-wise dissimilarity between all
behaviors in the set. If n is the number of distinct behavior
types, then the behavior diversity value (BDScore) of the
developer d is calculated as:

𝐵𝐷𝑆𝑐𝑜𝑟𝑒 =

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1,𝑗 ̸=𝑖 𝐷𝑖𝑗

𝑛− 1
(1)

The behavior diversity is zero if a developer performs
behaviors of only one type. behavior diversity increases as
ancestral connection increases. In Figure 2, the set {𝐶,𝐹}
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Behavior

Contribution Discussion Study

Code Bug
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comment
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Figure 1: Classification tree of developer’s behaviors.

is more diverse than the set {𝐶, 𝐼} which in turn is more
diverse than the set {𝐶,𝑃𝑅}. In other words, diversity of two
leaf nodes whose parents are same is less diversity than two
leaf nodes whose parents are different. Note that we are not
interested in proportional abundance of a given leaf node (or
behavior type), because all we care about is whether the user
got an opportunity to use the feature at least once. Using this,
we are interesting in predicting user churn, so we formulated
the definition such that {𝐶, 𝐼}, {𝐶,𝐶, 𝐼} and {𝐶,𝐶, 𝐼, 𝐼} are
of equal diversity. In this work, the theoretical maximum for
behavior diversity for our hierarchy is 42.5.

3.2.2 Willingness and Capacity. The probability for a new
developer to become a LTCs is influenced by the willingness
and capacity [19]. Willing and capacity are important factors
to decide contributors’ activeness in future, and they may
also affect newcomers’ activities.

To measure a newcomer’s willingness and capacity quanti-
tatively, we focus on the following three types of behaviors:

∙ Number of comments (nComments): Total num-
ber of comments created by developer, as a proxy
of willingness. The more active the developers in dis-
cussion, the more willingness they contribute to the
project.

∙ Contribute code first (codeFirst): True if the de-
veloper contributed code first in his participation, as a
proxy of the willingness. Compared with commenting,
coding first often suggests that the developer has a
strong willingness to contribute.

∙ Has PR got merged (gotMerged): True if the de-
veloper has at least one pull-request be merged in his
early participation, as a proxy of the capacity.

3.2.3 Workload and Social Status. We wonder whether
work burden and social status are also associated with the
likelihood of developers becoming long-term contributors. In

this work, we use two features to measure the developer’s
workload and social status:

∙ Number of owned projects (nOwnProjs): Total
number of projects that the developer have when he
participates in the new one, as a proxy of the workload
of the developer. The more projects a developer owned,
the less time and effort he can spend on the new one.

∙ Number of followers (nFollowers): Total number
of followers that developer have when he/she partici-
pated in a project, as a proxy of the social connections
with other developers.

3.2.4 Environment and Feedback. Previous work showed
that the project environment at the joining time have obvious
impact on the contributors’ behavior [19]. We explore whether
project environment influences developers’ behaviors:

∙ Joining time (joinTime): Time duration between
the project creation and developer join in, in hours, as
a control variable.

∙ Project popularity (popularity): Project’s popu-
larity when developer join in, as a proxy of project
environment. Learning from Dabbish et al. [2], we de-
fine the project popularity as the sum of the number
of stars, forks and watchers:

𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = #𝑆𝑡𝑎𝑟𝑠+#𝐹𝑜𝑟𝑘𝑠+#𝑊𝑎𝑡𝑐ℎ𝑒𝑟𝑠 (2)

∙ Got others’ Comment (gotComment): True if oth-
er developers commented in the developer’s issue in
the early stage of his participation, as a proxy of the
other’s feedback.
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∙ Got positive feedback (positiveFeedback): To fur-
ther measure the others’ feedback, we used the senti-
ment analysis. In our study, we checked whether new-
comer got the positive feedback in their early partici-
pation, we did the following text mining steps:
1) Step 1: Text extraction.
We extracted all the others’ comment texts of each
issue/pull request that the joiner submitted. And we
combined those comment texts to a large textual string,
as T ;
2) Step 2: Tokenization.
Next, we divided the T into a set of tokens where a
single token corresponds to a single term. This step also
includes replacing all capitalized characters by their
lower-cased ones;
3) Step 3: Stop-words removal.
Because terms like “the”, “in” and “that” do not carry
much specific information in the context of comments.
Therefore, we removed all stop-words from the set of
tokens based on a list of known stop-words;
4) Step 4: Stemming.
Due to each single term can be expressed in different
forms but still carry the same specific information, we
used the Porter stemmer algorithm to transform each
term to its basic form;
5) Step 5: Sentiment analysis.
We used TextBlob tool 4 to get the sentiment score
of the textual string. The sentiment score larger than
0 means positive feedback, otherwise means negative
feedback.

3.3 Regression Modeling

To find out what factors affect the developers to become
LTCs and to what extent these factors affect their choice,
we propose a Long-term contributor prediction model based
on the regression modeling method. We use the generalized
linear regression modeling (package glm in R) with the “Log-
it” family of functions and log link function. The outcome
(dependent) variables of the model is the tag of developer
being a long-term contributor (ltcTag , 1 means True and 0
means False). Our independent variables come from different
confound dimensions as described before.

During our modeling, we log-transform variables where
needed to stabilize their variance and reduce heteroscedas-
ticity. We remove the top 2% of the data to control outliers
and improve model robustness. The variance inflation factors,
which measure multicollinearity of the set of predictors in all
our models, were safe, below 3. For each model variable, we
report its coefficients, standard error, z -value, odds ratio, and
significance level. We consider coefficients important if they
were statistically significant (𝑝 < 0.05). In hypothesis test-
ing, we used the non-parametric Wilcoxon-Mann-Whitney
(WMW) test to test for a difference in the medians between
two populations.

4https://textblob.readthedocs.io/en/dev/

4 EXPERIMENT SETTINGS

In this section we firstly present our research questions, de-
scribe the study case, and then give the evaluation metrics.

4.1 Research Questions

In this study, we aim to find out what factors may affect the
newcomers’ choice to be a LTCs, and investigate whether
we can predict the LTCs by analyzing their early-phase
behaviors. Particularly, we define the long-term contributors
(LTCs) in a project as the developers who meet the following
conditions:

∙ their active time in the project is more than one year;
∙ their contribution on source code was in the Top-30
among all the contributors in the project.

Note that the other developers who can not meet this
standard will be viewed as short-term contributors (STCs).

To formulate our study, we focus on the following four
correlated research questions:

∙ RQ1: Newcomer churn. How is the newcomer retention
and churn?

∙ RQ2: Behavior Difference between LTCs and STCs.
What are the behavior differences between the LTCs
and STCs in the early-phase? Are these LTCs more
active than STCs in the early-phase?

∙ RQ3: Potential indicators for LTCs. Which features
of a newcomer in the early-phase could serve as good
indicators of LTCs?

∙ RQ4: LTC prediction model. What if the performance
of the LTC prediction model? Can it be useful for
open source project leaders for identifying LTC at the
early-phase?

4.2 Experiment Data

We choose the large and popular project on GitHub, Ruby
on Rails (Rails), to perform our case study. Rails is a web-
application framework that includes everything needed to
create database-backed web applications with the Model-
View-Controller (MVC) pattern. It is powering the GitHub
infrastructure as well.

We first collected all historical data (before March 2016)
of Rails project, including issues, comments, commits and
issue events by using the GitHub API5. Then we extract all
the stakeholders who have changed an artifact or interacted
with another developer through the site.

Note that we ended our data collection on a certain date.
Therefore, we do not have information about users whether
or not they return to the system after one year. To avoid
such bias, we removed the developers whose joining date
was within one year before our deadline date. Totally, we
collected 36,661 developers and their behavior data. Among
them, 1,211 (3.3%) developers are long-term contributors.
Table 1 shows the detailed statistics. We find that on average,
the joinTime of each developer is 1,403 hours (median is

5https://developer.github.com/v3/
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Table 1: Basic descriptive statistics result.

Feature Mean St.Dev Min Median Max

#Developer sessions 6.2 15.34 0 0 96
#Comment 0.4 13.98 0 0 2,659
#Own projects 3.2 11.98 0 0 710
#Followers 9.7 110.63 0 2 16,361
BDScore 1.7 4.64 0 0 34.67
joinTime (hours) 1,403 689.90 0 1,462 2,530

Table 2: Confusion matrix used to calculate TPR and FPR.

True Type
LTCs STCs

Predicted LTCs TP: True Positives FP: False Positives
Type STCs FN: False Negatives TN: True Negatives

1,462 hours). On average, the BDScore of each developer is
1.7 (median is 0).

4.3 Evaluation Metrics

In our study, we used 10-fold cross validation methodology
to train and evaluate our classifier. That is, we randomly
partitioned discussions into 10 equal size sets. Then, we use
nine of these sets as training data and one of them as test
data. We repeated the cross-validation process 10 times, using
each one of the sets exactly once as test data.

Table 2 represents all possible outcomes when making
predictions of the developers. To evaluate the performance of
our approach, we first used the two most commonly evaluation
metrics: Precision and Recall.

∙ Precision: the percentage of newcomers predicted as
either LTC which are correctly predicted. We define
precision more formally as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

∙ Recall: the percentage of all newcomers of LTCs that
are actually predicted as LTCs. We define recall more
formally as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

We also used an alternate technique, the Receiver Oper-
ating Characteristic (ROC), to evaluate the performance of
our prediction model. The ROC compares the rate of true
positives (TPR) with the rate of false positives (FPR) and is
typically drawn as a curve [4]. Using this confusion matrix,
the TPR and FPR can be calculated as:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(5)

The “area under the ROC curve” (AUC) is then a statistic
summarizing the ROC curve in a single number represent-
ing the overall performance of the heuristic. This statistic
represents the probability that the outcome of the heuristic
is a better indication when compared to randomly choosing
the severity. Random classification has an AUC value of 0.5
while the perfect heuristic has an AUC of 1, which means
that the heuristic predicted the LTC correctly. Therefore, the
higher AUC value is, the better the heuristic performs.

5 STUDY RESULTS

We conducted intensive experiments on the Rails project for
the four research questions. The detailed results are presented
in the subsections.

5.1 RQ1: Newcomer churn

In the first question, we want to study the developer churn
in the Rails project. We firstly give a basic statistic analysis
of the number of newcomers per month since the creation of
Rails in GitHub.

Figure 3 shows that more than 250 newcomers would join
in Rails every month. The average number is 400. This reveals
that there are a lot of newcomers contributing to Rails which
makes it success.

Then for each stakeholder, we extracted all his/her be-
havior data. We calculated the number of sessions that each
developer have and counted the number of developers for the
different number of sessions. We found that large number of
developers drop out in their first few months. Particularly,
the significant drop occurs right after the first month, as
shown in the Figure 4.

Thus, we find that,
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Table 3: Percentage developer churn after different sessions.

#Behavior Types in first session 1 2 3 4 5 6 7

#Developer 31,609 3,255 1,263 341 146 38 9

Developer Churn after 1 session 80.7% 67.0% 53.8% 47.5% 31.5% 28.9% 11.1%
Developer Churn after 3 sessions 81.9% 70.5% 59.8% 54.3% 42.5% 44.7% 33.3%
Developer Churn after 5 sessions 82.7% 73.6% 63.6% 59.2% 50.0% 50.0% 33.3%

Developer Churn after 10 sessions 84.6% 78.5% 71.0% 68.9% 60.3% 60.5% 55.6%
Developer Churn after 20 sessions 88.2% 86.0% 81.7% 82.7% 72.6% 73.7% 88.9%
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Figure 3: Number of new developers per month from
Rails creation. Each time period equals one month.

Finding 1: Although a large amount of developers
joined in Rails, there is still a severe developer churn
existing.

Further, we investigate how developers behaviors affect
the developer churn. We define percentage developer churn
after the n months to be the number of developers who
dropped out of the community after the n sessions over the
total number of users who tried k behavior types in the first
session where k = 1,2,...,7 (although participation in all 9
behavior types is theoretically possible, the developers in our
dataset have participated in at most 7 behavior types by the
end of the first session) and n = 1,3,5,10,20. The results are
shown in Table 3. We find that, from the first session to the
20 sessions, the percentage of developer churn is increasing.

Also we find that 80.7% of developers that only performed
one type of behavior churn after the first session. While
in developers that performed two types of behaviors the
percentage is decreased to 67.0%. In developers that had
the full involvement behaviors (7 types), the percentage of
developer churn is only 11.1%.

Thus, we find that,
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Figure 4: Number of developer who have been active
for different lengths of time sessions, logged y-axis.

Finding 2: The developer churn is worsening over
time. Meanwhile, the lower diverse of developers be-
havior in the early phase, the greater the percentage
of churn.

5.2 RQ2: Behavior Difference between
LTCs and STCs

In this subsection, our goal is to compare the behavior differ-
ence between the LTCs and the STCs, including the number
of behavior activities of developers and the BDScore value of
behavior.

(1) The difference of number of behavior
Figure 5 shows violin plots6 of the distribution of the

behavior quantity between LTCs and STCs. On average, each
LTC contributes 2.2 behaviors, while each STC contributes
0.4 behaviors in their first-session. The WMW rank-sum test
reveals that LTCs contributes more behaviors than STCs in
the first-session (𝑊=2.7×107; 𝑝<2.2×10−16).

(2) The difference of BDScore

6https://en.wikipedia.org/wiki/Violin plot
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Figure 5: Number of behaviors of newcomers in the
first-session.
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Figure 6: Behavior diversity score of newcomers in
the first-session.

Figure 6 shows the distribution of the BDScore of LTCs
and STCs. The average BDScore of LTCs is 5.6, while the
value of STCs is 1.6. The WMW rank-sum test reveals that
LTCs have more diverse behavior than STCs (𝑊=2.8×107;
𝑝<2.2×10−16).

Thus, we find that,

Finding 3: LTCs are more active and more diverse
than STCs.

Further, we compared the early feedback between LTCs
and STCs. We find that 19.8% of LTCs got the positive
feedback, while for STCs, only 4.3% of them got the positive
feedback.

5.3 RQ3: Potential indicators for LTC

In this question, we seek to explore the potential indicators
for LTCs by using regression modeling method. Table 4
shows the regression results of the Long-term contributor

model. The fraction of total deviance explained by the model
is 14.6%.

As expected, the factor joinTime has a significant neg-
ative effect on the outcome. The odds ratio for the control
variable joinTime is 1− 1.1−0.3864 ≃ 3.6%, holding all oth-
er variables constant, which means that the odds of initial
changes are 3.6% lower for developers joining late to be a
LTC. This verifies that joining time is an important environ-
ment control factor. Thus, joining in a project earlier is good
for the developer to grow to a LTC.

The factor popularity has a significant negative effect on
the ltcTag. The odds ratio for popularity is 1.9%, holding
all other variables constant, which means that the odds of
initial changes are 1.9% lower for developers joining late to
be a LTC. Therefore, the later joining in the project, the less
likely to be a LTC.

The factor nOwnProjs has a significant negative effect
on the outcome. The odds ratio for nOwnProjs is 3.3%,
holding all other variables constant, which means that the
odds of initial changes are 3.3% lower for developers having
many own projects to deal with to be a LTC. This indicates
that work burden would prevent newcomers from becoming
an LTC.

The factor nFollowers has a significant positive effect on
the outcome. The odds ratio for nFollowers is 1.10.7730−1 ≃
7.6%, holding all other variables constant, which means that
the odds of initial changes are 7.6% lower for developers
having many social connections to be a LTC. Therefore, the
less burden and the more social connections, the more likely
to be a LTC.

The factor gotMerged has a significant positive effect on
the outcome. The odds ratio for gotMerged is 𝑒0.4877 − 1 ≃
62.9%, holding all other variables constant, which means that
the odds of initial changes are 62.9% higher for developers
whose contribution being accepted to be a LTC. Thus, the
higher possibility that developer’s contribution being merged,
the more likely this developer being a LTC.

The factor nComments has a significant positive effect on
the outcome. The odds ratio for nComments is 1.6%, hold-
ing all other variables constant, which means that the odds
of initial changes are 1.6% higher for developers discussing
more to be a LTC. Therefore, when a newcomer contributed
many comments, he/she has a higher possibility to become a
LTC.

The factor codeFirst has a significant positive effect on
the outcome. The odds ratio for codeFirst is 105.9%, holding
all other variables constant, which means that the odds of
initial changes are 105.9% higher for developers contributing
codes first to be a LTC. Thus, when contributing code first,
the newcomer has a higher possibility to become a LTC in
the future.

The factor BDScore has a significant positive effect on
the outcome. The odds ratio for BDScore is 2.2%, holding
all other variables constant, which means that the odds of
initial changes are 2.2% higher for developers behaving more
diversified to be a LTC. Therefore, the more active and
diversity, the more likely to be a LTC.
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Table 4: Long-term contributor model. The response is ltcTag.

Estimate Std.Error z value Odds ratio

(Intercept) -3.9540 0.0419 -94.268
scale(log(joinTime+0.5)) -0.3864 0.0225 -17204 -0.0362***
scale(log(popularity+0.5)) -0.1985 0.0324 -6.128 -0.0187***
gotComment TRUE 0.5846 0.1170 4.996 0.7943***
positiveFeedback TRUE 0.3551 0.1178 3.013 0.4263***

scale(log(nOwnProjs+0.5) -0.3554 0.0377 -9.418 -0.0333***
scale(log(nFollowers)) 0.7730 0.0331 23.393 0.0764***

gotMerged TRUE 0.4877 0.1388 3.513 0.6286***
scale(log(nComments+0.5)) 0.1644 0.0277 5.937 0.0158***
codeFirst TRUE 0.7224 0.1305 5.535 1.0594***

scale(log(BDScore+0.5)) 0.2290 0.0355 6.460 0.0221***

Null deviance: 10,641.2
Residual deviance: 9,086.5
AIC: 9,108.5
Number of obj.: 36,661

Note: ***𝑝 < 0.001, **𝑝 < 0.01, *𝑝 < 0.05

The factor gotComment has a significant positive effect
on the outcome. The odds ratio for gotComment is 79.4%,
holding all other variables constant, which means that the
odds of initial changes are 79.4% higher for developers getting
other’s comment to be a LTC. Thus, when a newcomer got
other developers’ comments, he/she is more likely to become
a LTC.

The factor positiveFeedback has a significant positive
effect on the outcome. The odds ratio for positiveFeedback is
42.6%, holding all other variables constant, which means that
the odds of initial changes are 42.6% higher for developers
getting other’s positive feedback to be a LTC. Therefore, the
more positive feedback, the more likely to be a LTC.

Thus, we find that,

Finding 4: Developer behavior diversity, willingness
and capacity, work burden and social status, environ-
ment and feedback, they all have effect on developer
for being a LTC.

5.4 RQ4: LTC prediction model

In this question, we aim to investigate the effectiveness of
the Long-term contributor model when predicting real LTC-
s. Based on the Long-term contributor model, we conduct
experiment on a proportion of developers to predict if they
will become LTCs or not based on their early phase behav-
iors. The detailed results are shown in Table 5. We find that,
through the 10-fold cross validation, the minimum value of
precision is 0 at the 3 round. The maximum value of precision
is 1 at the 4 round and the 9 round. For the value of recall, the
minimum value is 0 at the 3 round, while the maximum value
is 0.038 at the 6 round. For the AUC value, its minimum
value is 0.757 at the 4 round, and its maximum value is 0.844
at the 8 round. Compared to the measurement of precision
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Figure 7: The ROC curve of our prediction evalua-
tion.

and recall, the fluctuation of the value of AUC seems to
be smaller. Because most of developers in our dataset are
STCs, using AUC can better reflect the effectiveness of our
prediction model.

Figure 7 shows the ROC curve of our 10-fold cross vali-
dation. The red curve shows the mean change. Overall, we
see the performance of each validation is similar. The mean
precision of our model is 0.500, the mean recall of model is
0.022, and the mean AUC of our model is 0.807, which indi-
cates that our preliminary predictive model of LTCs could
potentially be used in practice.

Thus, we conclude that,

Conclusion: Our prediction model has a robustness
performance, which can be used to predict the LTC.
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Table 5: 10-fold cross validation result.

Round 1 2 3 4 5 6 7 8 9 10 Avg.

Precision 0.500 0.500 0.000 1.000 0.667 0.250 0.333 0.500 1.000 0.250 0.500
Recall 0.035 0.018 0.000 0.009 0.026 0.038 0.020 0.031 0.016 0.031 0.022
AUC 0.811 0.792 0.795 0.757 0.819 0.815 0.822 0.844 0.811 0.804 0.807

6 THREATS TO VALIDITY

Here, we discuss our threats associated with the methodology
and analyses. In this work, we use precesion, recall, and ROC
to evaluate the effectiveness of our model. These metrics
are commonly-used in software engineering prediction tasks.
Thus, the threat to our construct validity should be little.

We note that our model’s fit to the data is around 15%
of the deviance. That is not necessarily a problem for our
purposes as we are only interested in the coefficients effect
and not relying on the models to explain the full phenome-
na, which would require many more variables. Also in our
prediction evaluation period, we proved that our model can
perform a stable and good outcome.

Our external threat stems from the generalizability of our
results. We evaluated our approach on a famous and large
open-source projects on GitHub, i.e., Rails. In future work,
we plan to reduce this threat further by investigating the
data from more projects.

7 CONCLUSION

We found that the main differences among participants were
in their capacity, willingness and opportunity to contribute at
the time of joining. It is also likely to help OSS communities
to adopt better strategies to attract and retain newcomers.
Specifically, the probability of staying longer is associated
with how much value a new participant provides to the project
by commenting, putting more effort into issue reports, and by
the amount of attention the project provides to the newcomer.
Ironically, it is during times when projects are popular, thus
overwhelming the mentors, the community needs to put extra
effort to retain newcomers.
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