
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321136324

Internal quality assurance for external contributions in GitHub: An empirical

investigation

Article  in   Journal of Software: Evolution and Process · November 2017

DOI: 10.1002/smr.1918

CITATION

1

READS

35

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Pull request Review View project

CD&Docker View project

Yao Lu

National University of Defense Technology

8 PUBLICATIONS   5 CITATIONS   

SEE PROFILE

Xinjun Mao

National University of Defense Technology

123 PUBLICATIONS   255 CITATIONS   

SEE PROFILE

Yang Zhang

National University of Defense Technology

14 PUBLICATIONS   31 CITATIONS   

SEE PROFILE

Tao Wang

National University of Defense Technology

48 PUBLICATIONS   156 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Yao Lu on 16 May 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/321136324_Internal_quality_assurance_for_external_contributions_in_GitHub_An_empirical_investigation?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/321136324_Internal_quality_assurance_for_external_contributions_in_GitHub_An_empirical_investigation?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Pull-request-Review?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CD-Docker?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yao_Lu72?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yao_Lu72?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yao_Lu72?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinjun_Mao?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinjun_Mao?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinjun_Mao?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Zhang178?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Zhang178?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Zhang178?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Wang84?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Wang84?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Wang84?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yao_Lu72?enrichId=rgreq-e0e2df62226d1f539ac2b373728d1178-XXX&enrichSource=Y292ZXJQYWdlOzMyMTEzNjMyNDtBUzo2MjY3Mzg1MDk5MTAwMzdAMTUyNjQzNzUxMzkxNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2017; 00:1–20
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

Internal Quality Assurance for External Contributions in GitHub:
an Empirical Investigation∗

Yao Lu1∗, Xinjun Mao1, Zude Li2, Yang Zhang1, Tao Wang1 and Gang Yin1

1 College of Computer, National University of Defense Technology, Changsha, China
2 School of Information Science and Engineering, Central South University, Changsha, China

SUMMARY

For popular Open Source Software (OSS) projects there is always a large number of worldwide developers
who have been glued to making code contributions, while most of these developers play the role of casual
contributors due to their very limited code commits (for casually fixing defects and enhancing features).
The frequent turnover of such a group of developers and the wide variations in their coding experiences
challenge the project management on code and quality. This paper aims to investigate the status quo of
internal quality assurance for external contributions in social coding sites (e.g., GitHub). We first conducted
a case study of 21 popular GitHub projects to estimate the code quality of the casual contributors. The
quantitative results show that: (1) the casual contributors introduced greater quantity and severity of Code
Quality Issues (CQIs) than the main contributors; (2) the developers who contribute to different projects
as main and casual contributors did not perform significantly differently in terms of their code quality; (3)
the casual contributors who have few project stars tended to introduce more CQIs than those who have
many. Based on these findings, we further conducted a survey of 81 developers on GitHub, to understand the
integrators’ and contributors’ actual practices in terms of internal quality assurance. The qualitative results
expose some limitations of present internal quality control for external contributions in GitHub. Finally,
in consideration of these limitations, we discuss an alternative quality management paradigm: Continuous
Inspection for industrial practices. Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: internal quality; GitHub; casual contributor

1. INTRODUCTION

One essential distinction for Open Source Software (OSS) projects from proprietary software
projects is that: the internal quality of code plays a more critical role in the project’s success [1]. On
one hand, such code quality (e.g., readability and maintainability) will largely affect the quantity and
quality of the code contributions made later by the developers in the OSS context [2, 3, 4]. On the
other hand, open-source code should be ‘rigorously modular, self-contained and self-explanatory’,
in order to support development at worldwide sites, which forms a general ‘criterion’ for internal
code quality control [5]. Another reason for obtaining high quality code from an open source project

∗This paper is a an enhanced version of paper (Lu et al. “Does the Role Matter? An Investigation of Casual Contributors
Code Quality in GitHub”, 23rd Asia-Pacific Software Engineering Conference, APSEC 2016). In the APSEC‘16 paper,
we conducted a quantitative analysis of code quality between casual contributors and main contributors in GitHub. Based
on the findings, in this enhanced submission, we conducted an online survey to deeply understand the developers work
practices and encountered challenges in terms of ensuring the internal quality of contributions. This research is supported
by research grants from Natural Science Foundation of China under Grant No. 61472430, 61502512, 61532004 and
61379051.
∗Correspondence to: College of Computer, National University of Defense Technology, Sanyi Road, Kaifu District,
Changsha, China.

Copyright c© 2017 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]



2 Y. LU ET AL.

is the fact that the next step could be the maintenance of an open product to address the vertical
marketing requirements [6]. A previous study [7] found that the distribution of code contributions
in a OSS project approximately obeys the Pareto Principle: 30% of the code contributions comes
from 70% of the contributors. Typically, these 70% contributors casually submit a very limited
number of defect fixes, feature enhancements, etc.; thus we call them casual contributors. From the
perspective of total quality management for the OSS products, it is required to effectively ensure
and control the quality of the code made by casual contributors in a manner that is equivalently
to that for the main contributors, and this process might be more challenging because the quantity
and variance of casual contributors is usually considerably greater than that of main contributors.
Therefore, we conducted a case study to investigate the code quality of casual contributors in the
OSS communities.

Static code analysis is an important way to assess and maintain software internal quality, and has
become an integral part of the modern software process [8]. For example, some of the tools are
supported as GitHub Integrations for pull-request workflows, to check the quality of the submitted
patches. Combined with the features provided by the version control system (e.g., the git blame
command in Git), an issue reported by the static tool can be tracked to its author, which enables us
to evaluate the code quality of a developer.

In this study, we use SonarQube, which is a popular and powerful static analysis tool, to analyze
the revision history of 21 sampled GitHub projects. We propose a taxonomy for main and casual
contributors and evaluate their code quality using the density of introduced quality issues. Based on
the quantitative findings, we further conduct a survey to understand integrators’ and contributors’
work practices and encountered challenges in terms of internal quality assurance. The following are
some of the most noteworthy contributions of this paper:

• We propose a method to estimate developers’ code quality using the “Code Quality Issue
Density (CQID)” metric.

• We find that casual contributors tend to introduce a greater quantity of CQIs with greater
severity than the main contributors. Nevertheless, when the developers contribute to different
projects in main and casual roles, they did not perform significantly differently in terms of the
code quality.

• We find that casual contributors tend to introduce CQIs on coding convention, error-
handling, CWE (Common Weekness Enumeration) and brain-overload, which can decline
the readability, reliability, efficiency and testability of the software.

• We obtain insights into the integrators’ and contributors’ work practices and encountered
issues in terms of internal quality management, and we discuss Continuous Inspection as an
alternative quality assurance model for social coding sites.

These findings can provide insights into the characteristics of the code quality in the OSS context,
and can also guide the internal and external developers in managing code quality. We believe that
this work can contribute to theory building by providing empirical evidence about the common
practices of quality management in OSS communities.

The remainder of this paper is organized as follows. Section 2 discusses the related work. Section
3 introduces the research questions and methodology of the study. Section 4 gives the quantitative
and qualitative findings for the research questions, and Section 5 discusses the implications based on
the findings. Section 6 identifies the threats to the validity of our study. Finally, Section 7 concludes
the paper and discusses our proposals for the future work.

2. BACKGROUND AND RELATED WORK

2.1. Code Quality Measurement

Code quality measurement has been discussed for a long time and many types of metrics have
been proposed. Some commonly accepted ones measure the code quality from different views,
e.g., complexity metrics (McCabe’s Cyclomatic Complexity, Halstead Complexity, etc.), object-
oriented metric sets (CK metric set [9]) and code smells (Duplicated Code, Feature Envy, etc)[10].

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 3

Some metrics focus on a specific characteristic of software quality: the Maintainability Index for
maintainability, and the Test Coverage for testability. The following section reviews related literature
and does not focus on a specific part or characteristic; instead, it focusses on measuring the code
quality by a single metric.

Dixon et al. used a single metric fault-proneness to evaluate code quality [11]. A code quality
score is determined by the probability that a source file is fault-prone, and the value is scaled
to run from 0 to 10. Goues and Weimer [12] used a set of seven metrics (including code churn,
author rank, code clones, etc.) as code quality metrics. Incorporating these metrics, they proposed
two new specification miners and compared them to previous approaches. Their miner learns more
specification and has a lower false positive rate. To understand the structural quality, Stamelos et
al. [6] conducted a case study on 100 applications that were written for Linux using a measurement
tool. They mapped four quality criteria to several metrics, and calculated a final score for each
component. They found that the quality of code produced by open source is lower than the quality
that is expected by an industrial standard, and the average component size of an application is
negatively related to the user satisfaction for the application. Wong-Mozqueda et al. [13] adopted
a set of seven well known metrics as quality indicators and mined the relationship between code
quality and test coverage. Performing a correlation analysis on three popular GitHub projects, they
found that all of the response variables had modest but significant relationship with the line coverage
and a stronger relationship with the branch coverage. To deriving meaningful metric thresholds for
the effective use of software metrics, Alves et al. [14] designed a method that determines metric
thresholds empirically from measurement data. Their method respects the distributions and scales
of source code metrics, and is resilient against outliers in metric values or system size. They applied
the method to a benchmark of 100 object-oriented software systems, both proprietary and open-
source, to derive thresholds for metrics included in the SIG maintainability model.

In these studies, the internal code quality is measured by a suite of metrics. Hence, the quality of
code is determined by the values of the metrics and the corresponding thresholds, i.e., low-quality
code is indicated when the metric values are beyond or below certain thresholds. In our study, we
refer to the metric: defect density that measures the external quality of software, and use code quality
issue density to measure the internal quality of code. A code quality issue is a violation in code that
can decrease the internal quality attributes (such as readability, maintainability and security) of
code, and is usually analyzed by static analysis tools. Some of the code quality issues are reported
because the metric values are beyond or below certain thresholds, e.g., a method is reported an issue
on complexity when its cyclomatic complexity exceeds the threshold value.

2.2. Static Analysis and Internal Quality

Static analysis tools look for violations of reasonable or recommended code practice [15], and
they have become an integral part of the modern software developer’s toolbox for assessing and
maintaining software quality [8]. To precisely attribute the introduction and elimination of these
violations to individual developers, Avgustinov et al. [8] proposed an approach for tracking static
analysis violations over the revision history. They performed an experimental study on several large
open source projects, which provided evidence that these fingerprints are well-defined and capture
the individual developers’ coding habits. Nagappan et al. [16] conducted a case study on the early
prediction of pre-release defect density based on the issues found using static analysis tools. They
found that static analysis issue density can be used to predict pre-release defect density at significant
levels, and can also be used to discriminate between components of high and low quality. Nagappan
et al. [17] investigated the use of automated inspection for a industrial software system at Nortel
Networks. They proposed a defect classification scheme for enumerating the types of defects that
can be identified by static tools, and demonstrated that automated code inspection faults can be used
as efficient predictors of failures.

Baca et al. [18] conducted a case study to evaluate static code analysis in industry on defect
detection capability, deployment and usage of automated code analysis. They found that the tool
is capable of detecting memory-related vulnerabilities, but few vulnerabilities of other types. The
deployment of the tool played an important role in its success as an early vulnerability detector.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



4 Y. LU ET AL.

They also found that the correction of false positives in some cases created new vulnerabilities
in previously safe code, and that, in addition, the tool should be integrated with bug reporting
systems, and developers should share the responsibility for classifying and reporting warnings. To
reduce the fault report rate of static code analysis, Szer [19] proposed an approach and a toolchain
for integrating static analysis and runtime verification. They utilized the static analysis results to
generate runtime verification specifications, and used runtime verification results to eliminate false
positives of the static analysis tools. Yamashita [20] et al. replicated a technique for calculating
metric thresholds to determine high-risk files based on code size and complexity using a very large
set of open and closed source projects written primarily in Java. They found that the probability of a
file having a defect is higher in the very high-risk group with a few exceptions, and the same amount
of code in large and complex files was associated with fewer defects than when located in smaller
and less complex files. Their findings indicated that risk thresholds for size and complexity metrics
have to be used with caution if at all.

In contact to these research efforts focused on the correlation between static code quality and
other product measurements, e.g., internal code quality v.s. defects [16, 17, 20], our study focuses
on the code quality from the perspective of developers. More specifically, we intend to analyze the
relationship between developer roles and code quality in the OSS context.

2.3. Software Quality Assurance

Previous studies [21, 22, 23, 24] have shown that human factors play a significant role in the quality
of software components. Georgios et al. [25, 26] conducted two surveys on a set of integrators and
contributors in GitHub to understand their work practices and challenges in pull-based development.
They found that the contribution quality is a major concern for both integrators and contributors,
and is one of the most frequently reported challenge items. They also found that automated testing,
as a way of achieving shared understanding of quality, is a commonly accepted method to ensure
the contribution quality. Kupsch et al. [27] discuss the methods and challenges on using software
assurance tools. They also present quantitative evidence about the effects that can occur when
assurance tools are applied in a simplistic or naive way.

Cavalcanti et al. [28] performed a systematic review on the literatures on studying change
requests. They classified the selected 142 studies into two dimensions according to following
the topics: challenges and opportunities. They also investigated tools and services for change
request management, to understand whether and how they addressed the topics that were identified.
Nagappan et al. [23] conducted a case study on Windows Vista and provided evidence that the
organizational metrics are related to failure-proneness. Bird et al. [29] examined the relationship
between ownership measures and software failures in Windows Vista and Windows 7. They found
that measures of ownership have a relationship with both pre-release faults and post-release failures:
high levels of ownership are associated with fewer defects. They also found that a developer tends
to introduce defects more easily as a minor contributor than as a major contributor. Boh et al. [30]
found that project specific expertise has a much larger impact on the time required to perform
development tasks than high levels of diverse experience on unrelated projects. Mockus et al. [31]
found that changes made by developers who are more experienced with a piece of code are less
likely to induce failure.

None of these studies focus on the topic of internal quality assurance for external contributions in
the OSS context. In our study, we aim to understand the integrators’ and contributors’ work practices
of internal quality assurance, and the encountered challenges in the process.

3. METHODOLOGY

The main goal in this study is to investigate the internal quality assurance in social coding sites (e.g.,
GitHub). We are interested in evaluating the internal quality of code made by casual contributors in
OSS projects, and in understanding the work practices of the contributors and integrators on internal
quality assurance in OSS communities. We structured our goal around several research questions.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 5

In OSS projects, a significant portion of the contributions come from casual contributors, while
the lack of understanding of the project and diverse array of programming experience among them
challenge the code quality ensurance work. Thus, our first research question was to evaluate the
code quality of the casual contributors:
RQ1: How is the code quality of the casual contributors in social coding cites?

We sought to examine whether casual contributors would contribute lower quality of code,
compared with that of the main contributors. We were also interested in finding out what quality
issues the casual contributors tend to introduce. Moreover, prolific developers in OSS communities
have social incentives to contribute multiple projects [32]. Since a person’s energy is limited and
her interest is focused on a few projects, she might contribute different projects in different roles.
Then, will she contribute lower quality code when playing a casual contributor role? Therefore, we
refined our first research question as follows:

RQ1.1: Is the quality of the code made by casual contributors lower than that of the core
contributors?

RQ1.2: When developers contribute multiple projects as different roles (main/casual contributor),
do they perform differently in terms of the code quality?

RQ1.3: What types of CQIs do casual contributors tend to introduce? Which aspects of the
software quality do these CQIs affect?

Subsequently, we were interested in understanding how integrators and contributors work on
managing internal quality of code in practice, as well as their experiences and encountered issues.
This exploration is needed to guide future work in this area and led to our last research question:
RQ2: What are the developers’ work practices for ensuring internal quality of the contributions
in social coding sites?

RQ2.1: How do the integrators and contributors perform in order to ensure internal quality of
the contributions in social coding sites?

RQ2.2: What are the challenges of managing the internal quality of the contributions in social
coding sites?

To answer the two research questions, we analyzed the code quality of the developers in GitHub
and conducted a online survey, which are described below.

3.1. Data Analysis

3.1.1. Project selection: In this paper, we select software projects from GitHub platform, which is
the most popular code hosting site and is built on the Git version control system [33] [34] [35]. The
projects are chosen according to the following principles:

• The language is Java, JavaScript or Python.
• The project is not forked.
• The star number of the project is in the top 10 of the language in GitHub.
• The number of commits is in the range of 100–20000.
• The project can be correctly analyzed by SonarQube.

We extracted 30 projects (10 for each language) based on the first three principles using GitHub
API, and filtered 9 projects according to the last two principles (1 for small number of commits, 3
for large number of commits and 5 for reporting errors during the analyzing process). As a result,
21 projects are sampled, including 6 Python, 7 Java and 8 JavaScript projects (main metric values
for the sampled Python projects are shown in TABLE I). We cloned the whole git repository of
each project, and extracted the corresponding data of commits, participants, stars and Pull Requests
(PRs) before March 1st 2016 using GitHub API. The list of sampled projects and codes on data
acquisition and processing in this study can be accessed at the GitHub page‡.

3.1.2. Code quality analysis: There are a variety of static analysis tools, while most of them focus
on a specific field or language. For example, CheckStyle mainly checks the coding style, while

‡https://github.com/roadfar/CasualContributor

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



6 Y. LU ET AL.

Table I. Main Metric Values for the Sampled Python Projects

Language Project Stars Participants CQIs

Python

jkbrzt/httpie 20828 583 570

mitsuhiko/flask 18139 1186 2485

kennethreitz/requests 17260 2151 3409

rg3/youtube-dl 13960 4908 36333

scrapy/scrapy 12256 823 29632

letsencrypt/letsencrypt 11510 1086 22836

FindBugs aims to help developers find potential defects; PMD only analyzes Java source files while
Oink is for C++ projects. In this paper, we select the SonarQube platform, which is a powerful
tool to perform static analysis; it supports more than 20 code languages and covers 7 axes of code
quality: architecture & design, duplications, unit tests, complexity, potential bugs, coding rules and
comments. It is a web-based application and provides a powerful plug-in mechanism to support users
in adding new languages, rules and integrations, and it also provides integrations with mainstream
IDEs such as Eclipse, Visual Studio and IntelliJ IDEA through the SonarLint plugins. In addition,
some superb features (e.g., TimeMachine, Technical Debt, Quality Issue Tracking, etc.) make the
users manage the code quality more efficiently. The quality characteristic model is based on the
SQALE (Software Quality Assessment based on Lifecycle Expectations) methodology§. SQALE
is a quality model to support the evaluation of the non-functional requirements that relate to the
code quality. It is a generic method, independent of the language and source code analysis tools,
and has been used by many organizations for applications of any type and any size. In addition,
this method allows doing the precise management of design debt for agile software development
projects [36, 37].

After installing the Git plugin, SonarQube can automatically detect the introduced commit of the
CQI using the git blame command and display the relevant information on the source code view (as
shown in Figure 1). These plugin data can be accessed through the web service API, and SonarQube

Figure 1. Screenshot of SonarQube Issue Page

also stores the git email of the author of the CQI in the MySQL database, which facilitates us in
obtaining the CQIs introduced by a contributor.

To obtain the CQIs introduced by all of the contributors in a project, we need to scan its whole
revision history. We first wrote a simple algorithm to analyze every revision for a project, and we

§http://www.sqale.org

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 7

found that for the projects whose commit number is more than 5000, the scanning time can be
more than one day on a Quad Core i7 processor, 16GB memory machine. Thus, we optimized the
algorithm, while scanning only the commits that need to be scanned. We sorted all the commits of
a project by the commit time: C1, C2, . . . , Cn, and defined the commits need to be analyzed: NC1,
NC2, . . . , NCk (k ≤ n). NCi is defined in a recursive way below:

NCi =


Ci i = 1⋂k

j=1 f(Cj) ∩ f(NCi−1) = ∅, i> 1⋂k
j=1 f(Cj) ∩ f(NCi−1) ∩ f(NCi) 6= ∅

f(Ci) is the set of changed files of Ci, and Cj , Cj+1,. . . , Ck is the set of commits between NCi−1
and NCi. An example is shown in Figure 2: if C1 is a commit need to be analyzed, then C3 and
C1, C5 and C4 have common changed files (file A and F, respectively); therefore, C3 and C5 are the
commits need to be analyzed.

Figure 2. Optimization of the Scanning Algorithm

3.1.3. Definitions of Core Terms: Unlike some of the previous literatures, we define the contributors
as those who have made technical contributions to a project:

• Contributor — a developer in the OSS context who has made at least one commit to the
project, not including the commits whose PRs are rejected.

Some studies in the literatures have used similar or opposite definitions of the term casual
contributor. Zhou and Mockus [38] defined Long Term Contributor to be a contributor who stays
with the project for at least three years and who has productivity that exceeds the 10th percentile
among the participants who have a tenure that exceeds three years. To measure the ownership of a
component, Bird et al. [29] examined the distribution of ownership, and defined Minor Contributor
as one whose contribution percentage to a component is below 5%.

In this study, we adopted the number of commits to a project to evaluate a developer’s
contribution, because the number of commits reflects the frequency of developers’ contributing
actions, which conveys better the ‘casual’ concept in the term ‘casual contributor’, compared with
other contribution metrics such as changed code lines. In addition, the numbers of commits and
contributors of different projects are different, so that the contributors with large number of commits
in the projects that have large number of commits or few contributors may be categorized as casual
contributors when using a percentage threshold, which does not fit well with our understandings
of casual contributors (contributors who have made very limited code contributions to a project
casually). Therefore, we adopted an absolute number of threshold instead of the percentage when
defining casual contributors. When calculating the threshold value, we refer to the definition of
‘minor contributor’ in [29], and categorized casual contributors as those whose commit numbers
are below the 5th percentile. We calculated the unified threshold on the whole data set and the value
is 5. This means that casual contributors typically contribute around one PR to a project, because
the mean number of commits in a PR is 4.47 [39]. Therefore, the core terms used throughout this
paper are defined below:

• Casual Contributor — a contributor in the OSS context whose commit number to a project is
below 5.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



8 Y. LU ET AL.

• Main Contributor — a contributor in the OSS context whose commit number to a project is
at or above 5.

As a result, there are 1596 casual contributors and 367 main contributors in our data-set, and
about 81 percent of the developers are identified as casual contributors.

3.1.4. Developers’ Code Quality Measurement: Traditionally, software quality has been
decomposed into internal and external quality attributes [1] [40] [41]. The external quality attributes
are often reflected at the runtime stage, e.g., functionality, usability, correctness, etc., which can be
perceived by users. An important and commonly used measure for the external quality is defect [42].
Correspondingly, the internal quality attributes are often reflected at development and maintenance
stage, e.g., maintainability, readability, security, etc, which are more concerned by developers. For
poor internal quality attributes, there are some commonly accepted patterns, which can decrease the
sub-characteristics. For example, the over-complexity of the methods and fewer comments affect
the maintainability and readability; and unused parameters and duplications could cause security
and reliability problems. Both external and internal quality are critical in a software project [1]. In
this paper, we focus on a static view of the software, while considering its internal quality from the
point of view of developer, since it can reflect the developers’ code quality.

3.1.5. Code Quality Issues: While running an analysis, SonarQube raises an issue when a piece of
code breaks a coding rule, and stores it in the MySQL database. The set of coding rules is defined
through the quality profile associated with the project, and developers can also manually create rules.
To distinguish issues in SonarQube from the issues in issue-tracking systems, we define the issues
analyzed by SonarQube as Code Quality Issues (CQIs). Similar to defects, each CQI in SonarQube
has one of five severities:

• BLOCKER — A bug with a high probability of impacting the behavior of the application
in production, e.g., memory leak, unclosed JDBC connection, etc. The code must be fixed
immediately.

• CRITICAL — Either a bug with a low probability to impact the behavior of the application in
production or an issue that represents a security flaw, e.g., empty catch block, SQL injection,
etc. The code must be reviewed immediately.

• MAJOR — A quality flaw that can highly impact the developer productivity, e.g., uncovered
piece of code, duplicated blocks, unused parameters, etc.

• MINOR — A quality flaw that can slightly impact the developer productivity, e.g., lines
should not be too long, ”switch” statements should have at least 3 cases, etc.

• INFO — Neither a bug nor a quality flaw, just a finding.

3.1.6. CQID metric for developers’ code quality: We use the Code Quality Issue Density (CQID),
which is the number of introduced CQIs per changed code line to assess a developer’s code quality
in a project, without considering the differences among the CQIs’ severities. We calculated the
number of changed code lines of a user using the git log command, counting the added and changed
lines [43].

3.2. Survey Design

3.2.1. Protocol: Based on the quantitative results, to understand the developers’ work practices on
internal quality management in GitHub, we sent two anonymous online surveys to the integrators¶

and contributors‖ of the sampled projects. Both surveys were split into three logical sections:
demographic information, multiple choice or Likert-scale questions and open-ended questions.
In the demographic section, we asked them about their experiences in software development and

¶https://roadfar.typeform.com/to/v0Kb8d
‖https://roadfar.typeform.com/to/xeYsd3

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 9

GitHub use. In the second section, we used Likert-scale questions to learn their work practices
and attitudes on handling and addressing the code quality of PRs. To further elicit the developers
opinions, in all of the questions that had predefined answers but no related open-ended question,
we included an optional ‘Other’ response. Finally, we used open-ended questions to understand
the integrators and contributors encountered problems and their perceptions of code quality
management. To allow the respondents to understand the term ‘internal quality’, we illustrated it
in the subjects with examples.

3.2.2. Data collection: We extracted the emails of the integrators (i.e., the GitHub users who have
closed other developers’ PRs) and the contributors who have registered their email address on
GitHub. To encourage participation, the surveys were customized on the participants’ salutation,
and the web address was sent by personal email to all of the participants. As a result, we emailed
161 integrators and 471 contributors, and received 16 answers (10% answer rate) and 65 answers
(14% answer rate), respectively.

3.2.3. Participants: The majority of the respondents self-identified as company employees (69%),
while 16% are full-time OSS developers, other occupations including student, consultant, founder
and unemployed. Most of surveyed integrators have more than 6 years of software development
experience (75%) and considerable experience (>4 years) in using GitHub (75%). In terms of the
investigated contributors, the software development experience appear to be more diverse, compared
with that of the integrators: 62% have more than 6 years of software development experience, while
3 have less than one year. In addition, 81% have been using GitHub for more than 4 years, and all
of the contributors have ever acted as casual contributors.

4. RESULTS

4.1. RQ1.1: Code Quality of Casual Contributors

To examine the code quality between the main and casual contributors, we first compared the
average CQID value of the two groups per project in each severity. Results show that casual
contributors introduce greater CQIDs than main contributors at blocker, critical, major, minor
and info severities in 100.00%, 90.48%, 71.43%, 61.90% and 71.43% of the sampled projects
respectively. We then compared the average CQID of the two groups on the whole dataset at different
severities. The results are shown in Figure 3, except for the info severity at which both the main and

Figure 3. Average CQID introduced by main and casual contributors

casual contributors have introduced few CQIs, the casual contributors introduce more CQIs than

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



10 Y. LU ET AL.

main contributors on average. Especially for higher severity CQIs such as blocker and critical, the
average of the CQID introduced by the casual contributors is over three times more than that of the
main contributors. This preliminary result motivated us to complete an in-depth analysis.

Since the distributions of the introduced CQIDs of the main and casual contributors do not follow
normal distribution, we used the non parametric Wilcoxon-Mann-Whitney (WMW) test to examine
the significance of the difference between the two groups. In this study, we used SPSS to perform
the statistical analysis, and the significance level was set at α = 0.05. The WMW test shows that
the p value is extremely low (<0.001). Thus, we reject the hypothesis that the introduced CQIDs
between the two groups are identical, and we reached the following finding:

Finding 1: In OSS communities, casual contributors tend to introduce more CQIs than main
contributors. Especially, the number of high-severity CQIs introduced by casual contributors are
three times more than the number from main contributors.

4.2. RQ1.2: Code Quality of a Developer as Different Roles

In our data set, we observed that there is a small group of developers who have contributed multiple
projects, and some of them have contributed different projects in different roles. This finding
motivated us to examine whether they perform differently in terms of their code quality when acting
as main and casual contributor roles. We picked out 29 developers who satisfied our condition.
Note that if a developer contributes more than two projects as main and casual contributor roles,
we made multiple pairs respectively. For example, artem-zinnatullin submitted 25 commits to the
RxJava project as a main contributor, while having 3 and 4 commits to retrofit and okhttp as a
casual contributor. Thus, RxJava-retrofit and RxJava-okhttp are the two pairs that are formed in the
example. Consequently, 37 pairs are formed. Since the sample size is small, we use the paired-
sample t-test to examine the significance of the difference in the CQID between the pairs. The
results are shown in TABLE II. We can see that there is small correlation between the introduced
CQID when the developers act in different roles when contributing to different projects. The results
for the paired samples test show that the difference in the mean value is not significant (p = 0.168
>0.05), and the differences in the mean value of CQID at all severities are not significant either.

Table II. The results for the paired-sample t test

Paired Samples Statistics
N mean Std.Error Mean

main 37 .042 .011

casual 37 .110 .048

Paired Samples Correlations
Correlation Sig.

main & casual .034 .842

Paired Sample Test
Mean Std. Deviation t Sig.

main - casual -.069 .049 -1.405 .168

blocker critical major minor info
t Sig. t Sig. t Sig. t Sig. t Sig.

main - casual 1.436 0.160 -1.000 0.324 -1.101 0.279 -1.092 0.282 0.280 0.781

Further, we observed that the star numbers of these contributors projects are relatively high,
which represent the high popularity of their projects. Combined with Finding 1, the result for
Finding 2 raised the question as to whether the CQIs introduced by casual contributors are mainly
attributed to the developers who have fewer project stars. Hence, we made an extensive analysis on

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 11

the differences in the project stars between the high CQID and low CQID group among the casual
contributors. We sorted the data of the CQIDs introduced by casual contributors and divided it into
four parts. An independent sample t-test was used to examine the significance of the differences in
the star number between the first quarter and the last quarter. The results show that the mean value
for the high and low CQID group are 123.59 and 339.87, respectively, and the p values for the f-test
(<0.001) and t-test (0.049) are both below 0.05. Therefore, we can make the following statement:

Finding 2: In the OSS context, the developers do not perform differently in terms of the code
quality when acting as main and casual contributor roles, and the developers who have fewer
project stars tend to introduce more CQIs than those who have more.

4.3. RQ1.3: Categories of Casual Contributors’ CQIs

A CQI raises when a component breaks a rule, and conversely, a CQI corresponds to a rule. By
default, SonarQube sets a characteristic of software quality and one or more tags for each rule.
Therefore, a CQI corresponds to a characteristic and multiple tags. To understand what CQIs the
casual contributors introduce frequently, we first classified the CQIs using the default taxonomy. If
a CQI has multiple tags, then it is classified into applicable each category. Figure 4 shows the top 5

Figure 4. Classification of the CQIs Figure 5. Influenced characteristics

categories of CQIs, and the interpretation for each category is listed below:

• Convention — coding convention, typically formatting, naming, whitespace, etc.
• Security — relates to the security of an application.
• Error-handing — improper handle on exception.
• CWE — Common Weakness Enumeration, CWE is a community-developed dictionary of

software weakness types, which provides a unified, measurable set of software weaknesses
that are related to architecture and design .

• Brain-overload — there is too much to keep in the programmers’ head at one time.

In our data set, we find that most of the CQIs tagged with error-handling are tagged with security
as well: 99% of the CQIs on error-handling are tagged with security, and 93% of the CQIs on
security are tagged with error-handling. This finding suggests that a large part of the CQIs in
the two categories consists of the same CQIs as calculated by our method. Therefore, we can
summarize from Figure 4 that over 50% of the CQIs introduced by casual contributors are on coding
conventions and exception handling. Further, for each of the four categories, we list the top three
rules that are the most easily broken by casual contributors in TABLE III. Usually, the coding
conventions are less strict rules to obey compared with other higher severity rules, such as rules on
exception-handling. OSS communities usually stipulate their own coding conventions to unify the
code style. To examine whether the CQIs on convention are in conformity with the projects coding
style, we randomly chose 50 CQIs and found that 44 are not. An example on adding semicolons at
the ends of statements in JavaScript is shown in Figure 6.

Figure 5 shows the top 4 characteristics that are influenced by casual contributors. The
characteristics are evaluated by the SQALE (Software Quality Assessment based on Lifecycle
Expectations) methodology. In the SQALE Quality Model, the priorities of the characteristics are
the following: Testability > Reliability > Changeability > Efficiency > Security > Maintainability

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



12 Y. LU ET AL.

Table III. The most easily broken rules by casual contributors

Category Name
Broken
times Per.1 Severity Language

Convention

Each statement should end with a
semicolon 73122 39.6% minor JavaScript

Statements should be on separate lines 31928 6.2% minor Java

Method names should comply with a
naming convention 21373 23.4% minor Python

Error-

handling

Generic exceptions should never be
thrown 87515 16.9% major Java

Exception handlers should preserve the
original exception 31876 6.2% critical Java

Throwable and Error should not be
caught 12359 2.4% blocker Java

CWE

Fields in a “Serializable” class should
be either transient or serializable 4872 1.0% critical Java

Class variable fields should not have
public accessibility 4536 0.9% major Java

Dead stores should be removed 2630 0.5% major Java

Brain-

overload

Functions should not be too complex 16661 9.0% major JavaScript

Methods should not be too complex 13092 7.1% major Java

Functions should not be too complex 7158 7.8% major Python
1 The percentage value is the ratio between the broken times and the total number of CQIs of

corresponding language

Figure 6. An example of a CQI on Coding Convention

> Portability > Reusability, which means that an app should be testable first and then it should be
reliable, then changeable, etc. It can be seen that the casual contributors introduce mainly quality
issues on the softwares readability, security, reliability, efficiency and testability, and the number of
issues increases as the priority of characteristics drop. Consequently, we can make the following
summary:

Finding 3: In the OSS context, casual contributors tend to introduce CQIs on convention, security,
error-handling, CWE and brain-overload, which can decline readability, reliability, efficiency and
testability of the software.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 13

12%

69%

75%

81%

88%

31%

25%

19%

How often do you use static analysis tools to
detect the quality issues of pull requests from

external contributors?

When reviewing pull requests, how often do you
check the internal quality of the code?

Among the new comers' pull requests you review,
how often do they violate the coding conventions

of your project?

How often do you reject pull requests because of
their low internal quality?

100 50 0 50 100
Percentage

Response Never Occasionally Often Always

Figure 7. Work practices of integrators on internal quality management

4.4. RQ2.1: Integrators’ and Contributors’ Work Practices

This section presents the results of our exploratory surveys. When quoting the survey respondents,
we refer to the integrators and contributors using [iX] and [cX] notations respectively, where
X is the respondents ID in our survey. Codes that result from coding open-ended answers are
underlined [26].

4.4.1. Integrators’ work practices: To ask the integrators about their work practices of managing
the internal quality of PRs, we provided them with a set of 4 questions with a 4-level Likert
scale. The answers are presented in Figure 7. The results show that, in general, the majority of
integrators (88%) would check the internal quality of the code when reviewing the PRs. In most
of the cases, however, the process is manual: most of them (75%) occasionally or never rely on
static analysis tools. When reviewing the PRs, a considerable portion of the integrators (31%) often
encounter coding-convention issues, which is consistent with the results of data analysis in Section
4.3. However, a smaller proportion of them would reject PRs because of low internal quality at
the same frequency, from which we can infer that some PRs that have been examined for coding-
convention issues are still accepted.

In the open-ended question section, we asked the integrators to write down the aspects that they
focus on with regard to internal quality when reviewing PRs. The results show that the aspects
of internal quality that they value are not the same from one to another. For example, in terms
of coding conventions, some of the respondents treat it strictly, e.g., “[the PRs] must match the
coding styles of current project” [i6], “Coding style have to be honored by a commit” [i16]; yet,
some integrators tend to ignore coding-convention issues only if they are really bad, e.g., “Design &
correctness are the most important ones. Conventions/formatting I’ll mention only if it’s really bad”
[i2]. Overall, the most frequently mentioned quality aspects are coding style (54%), documentation
(31%) and complexity (31%). Other mentioned aspects such as design (15%), integration with the
remainder of the code (15%), white space (8%) and structure (8%) are also about the clarity and
understandability of the code.

4.4.2. Contributors’ work practices: We provided a set of 5 questions to the contributors to
investigate their work practices with regard to ensuring the internal quality of PRs. The answers
are shown in Figure 8. We can see that most of the investigated contributors (86%) would always
consider the internal quality of their changed code, while there exist a few respondents (28%) have
ever neglected the impact of the code and its integration with the remainder of the code. With regard
to coding style, a small proportion of the contributors (18%) do not have a habit of reading the
conventions that are formulated by communities. Nevertheless, over half of the contributors (52%)
are accustomed to using static analysis tools.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



14 Y. LU ET AL.

0%

8%

18%

52%

98%

100%

92%

82%

48%

2%

How often do you use static analysis tools to
detect the quality issues of code?

How often do you read the coding convention
formulated by communities before submitting pull

requests?

How often do you consider the internal quality of
your changed code before submitting pull

requests?
How often do you consider its impact on the

internal quality of the original code before
submitting pull requests?

How often have your pull requests been rejected
because of internal code quality issues?

100 50 0 50 100
Percentage

Response Never Occasionally Often Always

Figure 8. Work practices of contributors on internal quality management

Synthesizing the integrators and contributors work practices on the internal quality assurance,
we can reach the following finding:

Finding 4: In the OSS context, most of the integrators and contributors value the internal quality
of the code, while they tend to check manually, without using quality analysis tools. Different
integrators care for different aspects of the internal quality, while the coding style, readability,
clarity and well integration with existing code are the frequently audited characteristics. A small
proportion of contributors do not become accustomed to reading the coding conventions, and
they tend to neglect the consequent impact on the internal quality of the code.

4.5. RQ2.2: Challenges of Internal Quality Assurance

To find the pain points of the internal quality assurance experienced by integrators and contributors,
we explicitly introduced a mandatory open-ended question in both of the surveys, and we asked the
respondents to state the challenge that they faced. We concluded the answers from the integrators
and contributors perspectives below.

4.5.1. Integrators’ pains: We learned that the challenges that the integrators faced mainly revolve
around two themes: challenges about the contribution quality and technical level of the contributors
and challenges about the tools. 31% of the respondents mentioned that the internal qualities
are sometimes paid less attention to by the contributors, compared with the external qualities,
e.g., “People only care about solving their immediate problem(s)” [i1], “Contributors are often
not invested enough to make code quality fixes” [i2], “They don’t add tests, let alone adding
documentation” [i3]. Some of the integrators mentioned the issue of the diversity of contributors’
programming skills. For example, “It’s difficult with so diverse programming skills (...)” [i3],
“There are constantly newcomers to educate” [i4]. An integrator mentioned the language issue and
complained about the Python and JavaScript contributors: “Python/JS dev[eloper]s are the worst,
they seem to make up the rules on the fly (...) they decide the coding standard is no longer important
(...) Programmers are the problem” [i13].

The tool theme also permeates several challenges. Some of the integrators mentioned that current
platform support for internal quality assurance is not sufficient and hoped for mechanisms like inline
reporting and editing quality issues. For example, “Also, I don’t want to look like a jerk asking to
respect the max line width. I’d love it if we had inline lint reporting on Github, so I can just be like
‘please fix lint warnings’. (...) inline lint warnings would be great (e.g. coming from Travis/Circle/X
CI). Inline editing of PRs would also be great, so that I can fix tiny nits without bothering the author”
[i2]. A respondent [i12] mentioned the automation of the maintenance of internal quality, “I would
prefer to see public source code maintenance (open source and otherwise) move toward becoming
”maintainers” through automation and decentralization”.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 15

4.5.2. Contributors’ pains: The challenges that are frequently reported by contributors are around
the management of core teams, the complexity essence of internal quality and tools. Some of the
respondents complained of the prejudice of integrators, e.g., “Many projects have an unhealthy
power structure (eg. there are more contributions than those people able and willing to review and
integrate the pull requests)” [c6], “Sometimes, the project stewards don’t know best and should
rather conform to the prevalent public opinion. ‘You can always fork and maintain your fork’ is
a joke” [c13], “There is a lot of hostility when submitting code to many small projects with few
contributors. I’m often met like this. I believe it’s because the project maintainer’s aren’t used to
having other people play with their toys/code” [c23]. A respondent [c9] mentioned the contradiction
between internal quality and contribution attraction: “Quality/style is important but being too strict
can also deter contributors. A project has to find a right balance”. A few respondents feel that it is
challenging to understand the project comprehensively, e.g., “understanding the project as a whole”
[c17]. The cognitive dissonance on the internal quality among the developers is mentioned, e.g., “It
varies a lot between projects and people” [c28].

Similar to the integrators’ answers, some of the contributors also mentioned
the issue of tool support for internal quality assurance. Quality issues about
automated detection and fixing of quality issues are expected by some respondents, e.g.,
“Comprehensive automatic review of pull requests is not quite there yet (checking code quality
and style). Automatic CI is not quite the same, GitHub+CI could really propose fixes to most
issues (whitespace, code style) automatically and that would help newcomers” [c29]. At the same
time, there are also some of the challenges mentioned by some respondents, e.g., “I think it’s a
hard problem to solve automatically with static analysis, since the hardest problems are clearly
communicating mental models between contributors and users, naming things unambiguously, and
getting people on the same page. While tools like automatic formatting fixers would take off a lot of
the back-and-forth between maintainers and contributors, it’ll always be a hard problem. Which is
okay, we can build tools to help people do this better, but it’ll stay a human problem for quite some
time” [c12].

Synthesizing the integrators’ and contributors’ answers, we conclude the main challenges on
internal quality assurance below:

Finding 5: In the OSS context, the contributors tend to attach more importance to the external
quality than to the internal quality, and the diversity of their programming skills challenges the
internal quality of the contributions. In addition, understanding the project comprehensively
is sometimes challenging for the contributors, and the variety of internal quality requirements
among the projects puzzles them. Platform support for internal quality assurance, such as
automated quality issue detection, fixing and integration into pull-based workflow, are expected
by both integrators and contributors.

5. IMPLICATIONS

Based on the findings above, this section discusses the limitations of internal quality management
in modern social coding sites and a possible improvement method: Continuous Inspection.

5.1. Limitations of Internal Quality Management in Social Coding Sites

5.1.1. Limitations of internal quality requirement specification: To ensure the internal quality of
the contributions, the projects (especially the popular ones) usually specify the internal quality
requirements in a contribution page. Generally, the internal quality requirements are on coding
conventions, e.g., Rails lists 11 coding rules, such as whitespace and naming styles, in the
contribution page. However, we can see from Finding 3 that the most frequently introduced CQIs
by casual contributors are on conventions, which are still merged into the code base. Based on
these findings, we attribute this result to two main limitations of such a specification method for
internal quality requirements. The first is lack of enforceability. Finding 5 shows that some of the

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



16 Y. LU ET AL.

contributors invested less into the internal quality of the code, compared with that of functional
aspects. In addition, from the integrators and contributors feedback in Finding 4, we can see that a
few contributors do not build a habit of reading the contribution page. Without constraints, PRs with
convention issues are submitted. Second, as indicated in Finding 5, internal quality requirements
vary a large amount among developers and projects. For example, though both were written in Ruby,
gitlabhq adopts a commonly accepted style guide∗∗, while rails formulates its own style††. Finding 2
shows that the developers do not perform differently in terms of the code quality when contributing
multiple projects, which implies that they tend to maintain their coding habits regardless of the
projects context. This finding is consistent with previous work [6], which provides evidence that the
developer-introduced violations can be used to compute fingerprints. Hence, the lack of uniformity
on internal quality requirements would puzzle developers because they must switch coding habits
when contributing to multiple projects.

5.1.2. Limitations of manual review on internal quality: Most OSS projects adopt the manual
review to audit the internal quality of PRs, i.e., the integrators manually decide whether a PR
conforms to the quality requirements of the project. Based on Finding 4 and 5, we can see some
limitations of such methods for ensuring the internal quality. First, the process adds burdens to
the integrators. The integrators must check the internal quality of each PR and communicate the
issues with the authors. The burdens are heavier on the integrators in popular projects [39]. When
encountering CQIs, whether to reject PRs puzzles them: if they reject the PR, they would discuss
the issues with the contributor; then, the contributor would have to fix it, and the integrators have
to examine it again, which can even deter the contributors. If they accept the PR, then they would
fix it by themselves without bothering the contributor. Second, the review process is subjective and
manual [25], which can challenge the reviewing quality. As evidence, the results in Section 4.4.2
show that a small proportion of the surveyed integrators (12%) do not form a habit of checking
the internal quality of the PRs. Nevertheless, the reviewing process is not always reliable for
the integrators who are accustomed to auditing the internal quality; in fact, Finding 4 shows that
different integrators tend to pay different amounts of attention to the internal quality and emphasize
different aspects of the quality characteristics.

5.2. Continuous Inspection for Internal Quality Assurance

In light of the limitations of the existing method, we seek a paradigm that provides an automated and
objective way to assure the internal quality. At this point, Continuous Inspection is an alternative
method that was proposed by SonarSource in 2013 [44]. Continuous Inspection provides continuous
code quality management that incorporates shorter feedback loops to ensure the rapid resolution
of quality issues. We believe that this method can be an alternative paradigm for tackling the
challenges in the prior section because of the principles below [44]: (1) All of the stakeholders
in the development process: stakeholders must be alerted when new quality flaws are injected,
and all new issues and existing critical issues must be assigned a clear path and timeline for
resolution, which means that the integrators and contributors should be involved in the quality
assurance activities. Under an automated quality analysis process, anyone who introduces quality
issues is responsible for fixing them. This principle implicitly requires the developers to comply
with predefined quality standards unconditionally; thus, it effectively addresses the challenge
“lack of enforceability” along with reducing the “burden of integrators”. (2) Software quality
requirements must be objective and must be common to all software products, regardless of
their specifics. Compared with manual reviewing, this principle emphasizes that the process should
be implemented by tools, in an objective way. There is no doubt that it helps to tackle the “lack
of uniformity” issue if all of the OSS projects adopt such a method and the corresponding tools in
future. In addition, the method is also beneficial to improving the “reviewing quality”.

∗∗https://github.com/bbatsov/ruby-style-guide/blob/master/README.md#source-code-layout
††http://edgeguides.rubyonrails.org/contributing to ruby on rails.html

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 17

Figure 9. The process of Continuous Inspection integrated into the Continuous Integration process

To support Continuous Inspection in the OSS context, SonarSource provides a GitHub integration
to automatically analyze the quality of the incoming PRs, which has been adopted by a few projects
in GitHub. A typical process is depicted in Figure 9. In the Continuous Integration process, the
continuous integration tool (e.g., Travis CI) automatically creates a new testing branch by merging
the PR authors branch and the main branch for an incoming PR; then, it builds and performs unit
testing. Until the PR passes the test suite, it would trigger a quality analysis process. If the severities
of the introduced CQIs of the pull request are high, e.g., critical or blocker, the PR will be rejected
automatically. Until the high-severity CQIs are fixed, the PR is delivered to integrators to review.
Because it is similar to the Continuous Inspection process, which adopts unit testing to ensure
the external quality, the Continuous Inspection process adopts static analysis to ensure the internal
quality. This process helps in finding quality problems early when fixing them is still cheap and
easy, and it can also educate developers instantly while the code is still fresh in their minds.

6. THREATS TO VALIDITY

This section discusses the threats to the validity that could have influenced this study. The three
subsections below present the threats to the internal, external and construct validity.

6.1. Internal Validity

The validity of the quantitative results in this study is built on the validity of the tool that we used:
SonarQube. The concepts and taxonomy that we used are all default values set by SonarSource.
The characteristic model is based on the SQALE methodology, which is a public methodology to
support the evaluation of a software applications source code in the objective, accurate, reproducible
and automated way. The SQALE method results of internal research performed within inspearit‡‡. It
has been validated through the analysis of millions of lines of code of numerous languages. It is now
implemented by private, open source and commercial tools and used within large organizations. A
common issue of static analysis tools is false positives [45], and we also find some cases in our study.
For example, we found that SonarQube analyzed naming conventions for the files that were auto-
generated by the development tools as well, e.g., the R file is a resource file that is generated by the
Android Development Toolkit, and the naming style of the variables (e.g., m text) is inconsistent
with the Java convention (e.g., mText). As a result, SonarQube reported CQIs on Convention at
almost every line of code in the R file, which are also involved in our data set.

‡‡http://www.inspearit.com

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



18 Y. LU ET AL.

In the survey design part, the question-order effect (e.g., one question could have provided context
for the next) could lead the respondents to a specific answer [46]. In our case, we decided to order the
questions based on the natural sequence of actions, to help the respondents recall and understand the
contexts of the questions asked [26]. In addition, the social desirability bias [47] (i.e., a respondents
possible tendency to appear in a positive light, such as by showing that they are fair or rational) could
have influenced the answers. To mitigate this issue, we informed the participants that the responses
would be anonymous.

6.2. External Validity

To ensure the size of the data-set, we sampled the projects that are the most popular projects with
a large number of stars. For the projects that have fewer stars, further verification must be made.
In addition, the study concerned only the Python, Java and JavaScript projects, and other popular
languages such as C++ and Ruby are not covered. Another risk to the external validity is the data
that is used when analyzing RQ2. We observed that all of the developers who contribute to different
projects in different roles have a large number of project stars and followers, which reflects their
social status and technical level. Thus, the conclusion might not hold for the developers with lower
social status and less technical experience.

In terms of the qualitative part, a main limitation is in the scale of the survey. We attempted to
send the surveys to a number of developers, while we found that a portion of the registered email
addresses (approximately 30%) were invalid, and the low response rate leads to the limited number
of respondents.

6.3. Construct Validity

Referencing the commonly used code quality metric, namely, the defect density, we measured the
developers code quality by the density of the CQIs without considering the severity of the CQIs.
However, as [48] mentioned, not all quality issues are equally important in a given context. In
our own experience, many info and minor level CQIs can be ignored, according to the specific case.
Thus, as a supplement, we compared the CQID between the main and casual contributors at different
severity levels, and the results enhanced our finding. In addition, we believe that this threat can be
alleviated in the big data context.

7. CONCLUSIONS AND FUTURE WORK

The level of internal quality that a software product has today tends to affect the level of its cost
liability tomorrow. In this study, we first quantitatively investigate the internal quality of the code
made by casual contributors in 21 popular OSS projects within GitHub, and we obtained some
valuable findings. For example, our study reveals that the casual contributors, especially those who
have fewer project stars, introduce three times more high-severity CQIs than the main contributors
do. We also find that when the developers contribute to different projects in different roles, they do
not perform differently in terms of the code quality. Categories and rules are presented to identify
what types of CQIs casual contributors frequently introduce. Based on the results, we conducted
a survey on integrators and contributors in GitHub. Qualitative analysis of the survey exposes
some limitations of internal quality management in GitHub, e.g., the diversity of the contributors
programming skills challenges the internal quality assurance for the integrators and adds external
burdens on them; additionally, the contributors sometimes have difficulty in understanding the
project comprehensively, and the variety of internal quality requirements among the projects puzzles
them. Finally, we discuss Continuous Inspection as an alternative method for internal quality
assurance in social coding sites. We believe that our findings and implications provide valuable
guidelines for quality management in the OSS context.

In terms of future work, based on the implications of this study, we will conduct a case study on
GitHub projects to analyze the influence of Continuous Inspection on the quality and efficiency of
the software and process.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



AN EMPIRICAL INVESTIGATION OF INTERNAL QUALITY ASSURANCE IN GITHUB 19

8. ACKNOWLEDGMENTS

We thank our postgraduate students Xiang Hou and Yiang Gan for their help with the experiments,
and we also want to thank SonarSource for their kind help in tool usage.

REFERENCES

1. Tonella P, Abebe SL. Code quality from the programmer’s perspective. PoS 2008; 001.
2. Kshetri NB, Palvia PB, Singh RB. Improving open source software maintenance. Journal of Computer Information

Systems 2010; 50(50):81–90.
3. Yu Y, Yin G, Wang T, Yang C, Wang H. Determinants of pull-based development in the context of continuous

integration. Science China Information Sciences 2016; 59(8):080 104.
4. Zhang Y, Wang H, Yin G, Wang T, Yu Y. Social media in github: the role of @-mention in assisting software

development. Science China Information Sciences 2017; 60(3):032 102.
5. Bollinger T, Nelson R, Self KM, Turnbull SJ. Open-source methods: Peering through the clutter. IEEE Software

1999; 16(4):8–11.
6. Ioannis S, Lefteris A, Apostolos O, Bleris GL. Code quality analysis in open source software development.

Information Systems Journal 2002; 12(1):43–60.
7. Gousios G, Kalliamvakou E, Spinellis D. Measuring developer contribution from software repository data. in

Proceedings of 2008 International Working Conference on Mining Software Repositories, 2008; 129–132.
8. Avgustinov P, Baars AI, Henriksen AS, Lavender G. Tracking static analysis violations over time to capture

developer characteristics. IEEE International Conference on Software Engineering, 2015; 437–447.
9. Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Transactions on Software Engineering

1994; 20(6):476 – 493.
10. Van Emden E, Moonen L. Java quality assurance by detecting code smells. Reverse Engineering, 2002. Proceedings.

Ninth Working Conference on, IEEE, 2002; 97–106.
11. Dixon M. An objective measure of code quality. Technical Report, Energy Group, Beverly, Massachusetts 2008.
12. Goues CL, Weimer W. Measuring code quality to improve specification mining. IEEE Transactions on Software

Engineering 2012; 38(1):175–190.
13. Wong-Mozqueda JA, Haines R, Jay C. Is code quality related to test coverage? in Proceedings of the International

Workshop on Sustainable Software Systems Engineering, 2015.
14. Alves TL, Ypma C, Visser J. Deriving metric thresholds from benchmark data. IEEE International Conference on

Software Maintenance, 2010; 1–10.
15. Ayewah N, Hovemeyer D, Morgenthaler JD, Penix J, Pugh W. Using static analysis to find bugs. IEEE Software

2008; 25(25):22–29.
16. Nagappan N, Ball T. Static analysis tools as early indicators of pre-release defect density. in Proceedings of the

27th International Conference on Software Engineering, 2005., 2005; 580 – 586.
17. Nagappan N, Williams L, Hudepohl J, Snipes W, Vouk M. Preliminary results on using static analysis tools for

software inspection. the 15th IEEE International Symposium on Reliability Engineering 2004; :429–439.
18. Baca D, Carlsson B, Kai P, Lundberg L. Improving software security with static automated code analysis in an

industry setting. Software Practice and Experience 2012; 43(3):259–279.
19. Sözer H. Integrated static code analysis and runtime verification. Software Practice and Experience 2015;

45(10):1359–1373.
20. Yamashita K, Huang C, Nagappan M, Kamei Y, Mockus A, Hassan AE, Ubayashi N. Thresholds for size and

complexity metrics: A case study from the perspective of defect density. IEEE International Conference on Software
Quality, Reliability and Security, 2016; 191–201.

21. Bird C, Nagappan N, Gall H, Murphy B, Devanbu P. Putting it all together: using socio-technical networks to
predict failures. in Proceedings of the 20th International Symposium on Software Reliability Engineering,, IEEE,
2009; 109–119.

22. Cataldo M, Wagstrom PA, Herbsleb JD, Carley KM. Identification of coordination requirements: implications for
the design of collaboration and awareness tools. in Proceedings of the 20th anniversary conference on Computer
supported cooperative work, ACM, 2006; 353–362.

23. Nagappan N, Murphy B, Basili V. The influence of organizational structure on software quality: an empirical case
study. in Proceedings of the 30th international conference on Software engineering, ACM, 2008; 521–530.

24. Pinzger M, Nagappan N, Murphy B. Can developer-module networks predict failures? in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software engineering, ACM, 2008; 2–12.

25. Gousios G, Zaidman A, Storey MA, Deursen AV. Work practices and challenges in pull-based development: The
integrator’s perspective. in Proceedings of the 37th International Conference on Software Engineering, vol. 1, IEEE
Press, 2014; 358–368.

26. Gousios G, Storey MA, Bacchelli A. Work practices and challenges in pull-based development: the contributor’s
perspective. in Proceedings of the 38th International Conference Software Engineering, ACM, 2016; 358–368.

27. Kupsch JA, Heymann E, Miller B, Basupalli V. Bad and good news about using software assurance tools. Software
Practice and Experience 2017; 47(1):143–156.

28. Cavalcanti YC, Anselmo P Mota Silveira Neto, Machado IDC, Vale TF, Almeida ES, Meira SRDL. Challenges and
opportunities for software change request repositories: a systematic mapping study. Software Evolution and Process
2014; 26(7):620–653.

29. Bird C, Nagappan N, Murphy B, Gall H, Devanbu P. Don’t touch my code!: examining the effects of ownership
on software quality. in Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ACM, 2011; 4–14.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr



20 Y. LU ET AL.

30. Boh WF, Espinosa JA. Learning from experience in software development: A multilevel analysis. Management
Science 2007; 53(8):1315–1331.

31. Mockus A, Weiss DM. Predicting risk of software changes. Bell Labs Technical Journal 2000; 5(2):169–180.
32. Vasilescu B, Blincoe K, Qi X, Casalnuovo C, Damian D, Devanbu P, Filkov V. The sky is not the limit: multitasking

across github projects. in Proceedings of the 38th International Conference on Software Engineering, ACM, 2016;
994–1005.

33. Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D. The promises and perils of mining
github. in Proceedings of the 11th Working Conference on Mining Software Repositories, ACM, 2014; 92–101.

34. Yu Y, Vasilescu B, Wang H, Filkov V, Devanbu P. Initial and eventual software quality relating to continuous
integration in github 2016; .

35. Yu Y, Wang H, Yin G, Wang T. Reviewer recommendation for pull-requests in github: What can we learn from
code review and bug assignment? Information and Software Technology 2016; 74(C):204–218.

36. Letouzey JL. The sqale method definition document. in Proceedings of the 3rd International Workshop on
Managing Technical Debt (MTD), 2012; 31 – 36.

37. Letouzey JL, Coq T. The sqale analysis model: An analysis model compliant with the representation condition for
assessing the quality of software source code. Advances in System Testing and Validation Lifecycle (VALID), 2010
Second International Conference on, IEEE, 2010; 43–48.

38. Zhou M, Mockus A. Who will stay in the floss community? modeling participant’s initial behavior. IEEE
Transactions on Software Engineering 2015; 41(1):82–99.

39. Gousios G, Pinzger M, Deursen AV. An exploratory study of the pull-based software development model. in
Proceedings of the 36th International Conference Software Engineering, ACM, 2014; 345–355.

40. ISO I. Iec25010: 2011 systems and software engineering–systems and software quality requirements and evaluation
(square)–system and software quality models. International Organization for Standardization 2011; :34.

41. Wong CP, Xiong Y, Zhang H, Hao D. Boosting bug-report-oriented fault localization with segmentation and stack-
trace analysis. in Proceedings of the International Conference on Software Maintenance and Evolution, IEEE, 2014;
181–190.

42. Zhang H, Babar MA. Systematic reviews in software engineering: An empirical investigation. Information and
Software Technology 2013; 55(7):1341–1354.

43. Lu Y, Mao X, Li Z. Assessing software maintainability based on class diagram design: A preliminary case study.
Lecture Notes on Software Engineering 2016; 4(1):53–58.

44. Gaudin O, SonarSource. Continuous inspection: A paradigm shift in software quality management. Technical
Report, SonarSource S.A., Switzerland 2013.

45. Rocha H, Valente MT, Maques-Neto H, Murphy G. An empirical study on recommendations of similar bugs. in
Proceedings of the 23rd International Conference on Software Analysis, Evolution and Reengineering, vol. 1, IEEE,
2016; 46–56.

46. Sigelaman L. Question-order effects on presidential popularity. Public Opinion Quarterly 1981; 45(2):199–207.
47. Furnham A. Response bias, social desirability and dissimulation. Personality and Individual Differences 1986;

7(3):385–400.
48. Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl JP, Vouk MA. On the value of static analysis for fault

detection in software. IEEE Transactions on Software Engineering 2006; 32(4):240–253.

Copyright c© 2017 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2017)
Prepared using smrauth.cls DOI: 10.1002/smr

View publication statsView publication stats

https://www.researchgate.net/publication/321136324

	1 Introduction
	2 Background and Related Work
	2.1 Code Quality Measurement
	2.2 Static Analysis and Internal Quality
	2.3 Software Quality Assurance

	3 Methodology
	3.1 Data Analysis
	3.1.1 Project selection:
	3.1.2 Code quality analysis:
	3.1.3 Definitions of Core Terms:
	3.1.4 Developers' Code Quality Measurement:
	3.1.5 Code Quality Issues:
	3.1.6 CQID metric for developers' code quality:

	3.2 Survey Design
	3.2.1 Protocol:
	3.2.2 Data collection:
	3.2.3 Participants:


	4 Results
	4.1 RQ1.1: Code Quality of Casual Contributors
	4.2 RQ1.2: Code Quality of a Developer as Different Roles
	4.3 RQ1.3: Categories of Casual Contributors' CQIs
	4.4 RQ2.1: Integrators' and Contributors' Work Practices
	4.4.1 Integrators' work practices:
	4.4.2 Contributors' work practices:

	4.5 RQ2.2: Challenges of Internal Quality Assurance
	4.5.1 Integrators' pains:
	4.5.2 Contributors' pains:


	5 Implications
	5.1 Limitations of Internal Quality Management in Social Coding Sites
	5.1.1 Limitations of internal quality requirement specification:
	5.1.2 Limitations of manual review on internal quality:

	5.2 Continuous Inspection for Internal Quality Assurance

	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity
	6.3 Construct Validity

	7 Conclusions and Future Work
	8 Acknowledgments

