
A Clustering-based Approach for Mining Dockerfile Evolutionary Trajectories
zhang yang, Wang HuaiMin and Filkov Vladimir
Citation: SCIENCE CHINA Information Sciences ; doi: 10.1007/s11432-017-9415-3
View online: http://engine.scichina.com/doi/10.1007/s11432-017-9415-3
Published by the Science China Press

Articles you may be interested in

A revolutionary approach for the cessation of smoking
SCIENCE CHINA Life Sciences 53, 631 (2010);

An Aircraft Conflict Resolution Method Based on Hybrid Ant Colony Optimization and Artificial Potential Field
SCIENCE CHINA Information Sciences , ;

CRISPR/Cas technology：a revolutionary approach for genome engineering
SCIENCE CHINA Life Sciences 57, 639 (2014);

An efficient self-optimized sampling method for rare events in nonequilibrium systems
SCIENCE CHINA Chemistry 57, 165 (2014);

A manifold approach to generating iso-scallop trajectories in three-axis machining
SCIENCE CHINA Technological Sciences 54, 131 (2011);

http://engine.scichina.com
http://engine.scichina.com/search?fq={"author":["\"zhang yang\""]}
http://engine.scichina.com/search?fq={"author":["\"Wang HuaiMin\""]}
http://engine.scichina.com/search?fq={"author":["\"Filkov Vladimir\""]}
http://engine.scichina.com/publisher/scp/journal/SCIS
http://engine.scichina.com/doi/10.1007/s11432-017-9415-3
http://engine.scichina.com/publisher/scp
http://engine.scichina.com/doi/10.1007/s11427-010-0107-3
http://engine.scichina.com/doi/10.1007/s11432-017-9310-5
http://engine.scichina.com/doi/10.1007/s11427-014-4670-x
http://engine.scichina.com/doi/10.1007/s11426-013-5009-3
http://engine.scichina.com/doi/10.1007/s11431-010-4161-7

SCIENCE CHINA
Information Sciences

. LETTER .

A Clustering-based Approach for Mining Dockerfile
Evolutionary Trajectories

Yang ZHANG1,2*, Huaimin WANG1,2 & Vladimir FILKOV3,4

1Key Laboratory of Parallel and Distributed Computing;
2College of Computer,National University of Defense Technology, Changsha, 410073, China;

3DECAL, University of California, Davis, CA, 95616, USA;
4Computer Science Department, University of California, Davis, CA, 95616, USA

Citation Zhang Y, Wang H M, Filkov V, et al. A Clustering-based Approach for Mining Dockerfile Evolutionary

Trajectories. Sci China Inf Sci, for review

Dear editor,
Docker1), as a de-facto industry standard [1], en-
ables the packaging of an application with all
its dependencies and execution environment in a
light-weight, self-contained unit, i.e., containers.
By launching the container from Docker image, de-
velopers can easily share the same operating sys-
tem, libraries, and binaries [2]. As the configu-
ration file, the dockerfile plays an important role,
because it defines the specific Docker image archi-
tecture and building orders [3]. As a project pro-
gresses through its development stages, the con-
tent of the dockerfile may be revised many times.
This dockerfile evolution is indicative of how the
project infrastructure varies over time, and dif-
ferent projects can exhibit different evolutionary
trajectories. However, projects with similar goals
and needs may converge to more similar trajecto-
ries than more disparate projects. Identifying soft-
ware projects that have undergone similar changes
can be very important for the discovery and im-
plementation of the best practices when adopting
new tools and pipelines, especially in the DevOps
software development paradigm. The potential to
implement the best practices through the analy-
sis of the dockerfile evolutionary trajectories mo-
tivated this work.

This research studied dockerfile longitudinal

changes at large scale and presented a clustering-
based approach for mining convergent evolution-
ary trajectories. An empirical study of 2,840
projects was conducted, and six distinct clusters
of dockerfile evolutionary trajectories were found.
Furthermore, each cluster was summarized, ac-
companied by case studies, and the differences
between different clusters were discussed. The
proposed approach quantifies distinct dockerfile
evolution modes and reflects the learning curves
of project maintainers, and this benefits future
project maintenance. Also, the proposed approach
is generic and can be used for the study of general
infrastructure configuration file evolution.

Dockerfile overview. A dockerfile2) is a text doc-
ument that contains all the commands a user could
call on the command line to assemble a Docker im-
age [3]. Users can create an automated build that
executes several command-line instructions in suc-
cession by using a docker build. Docker has pro-
vided multiple types of instructions for use in dock-
erfiles (see Appendix A in the supporting informa-
tion for details). Docker runs the instructions in a
dockerfile in order and treats lines that begin with
“#” as a comment. A dockerfile must start with a
FROM instruction, specifying the base build. Other
parts are then added on top of the base one [4], and
each instruction represents one layer in a Docker

*Corresponding author (email: yangzhang15@nudt.edu.cn)
1) https://www.docker.com/
2) https://docs.docker.com/engine/reference/builder/

Ac
ce

pt
ed

Downloaded to IP: 117.136.88.39 On: 2018-07-11 15:43:37 http://engine.scichina.com/doi/10.1007/s11432-017-9415-3

Zhang Y, et al. Sci China Inf Sci 2

image. Thus, the size of a dockerfile (number of
lines) can reveal the size and complexity of the
corresponding Docker image.

To meet the requirements of project develop-
ment, the content of a dockerfile may be modified
at different stages by project maintainers. These
changes over time are called the Dockerfile evo-
lution. E.g., during a previous stage, the owner
inutano of project inutano/wpgsa-docker added a
USER instruction and new python scripts to the
initial dockerfile. However, during the later stage,
he just updated the plugin’s wPGSA version, e.g.,
“0.2.0 ”→“0.3.0 ”. Thus, these changes reflect the
dockerfile evolution, and the changes depend on
the practices in individual projects. During the
preliminary data gathering of more than 57,000
projects from Docker Hub, nearly 70% of them
had changed their dockerfile at least once. In ad-
dition, over 5,000 projects changed their dockerfile
more than 10 times.

Our approach. This research proposed a
clustering-based approach that defined the docker-
file scale as the number of valid command lines of
the dockerfile without blank lines and comments.
The proposed approach consists of four steps.

• Step-1: Preprocessing. Initially, A number of
projects with different dockerfile versions were im-
ported. For each dockerfile, its scale was computed
after removing blank lines and comments. Then,
for project p with n dockerfile versions, the scale
of the i-th version was defined as si, and the evo-
lutionary trajectory of project p’s dockerfile was
represented by the vector Sp = {s1, s2, ..., sn}.
• Step-2: Smoothing. The Kernel regression

smoothing [5] was used to reduce the noise in
the original dockerfile evolutionary vectors. Tra-
ditional parametric estimation methods may not
capture all evolutionary trajectories with a lim-
ited mathematical formula, but Kernel regression
is a non-parametric linear smoother that can re-
duce noise by estimating the conditional expecta-
tion of a random variable. For each dockerfile scale
si in project p, a tuple vector was constructed,
(xi, si), i = 1, .., n;xi = i. For the smoothing, our
goal was to estimate r with some function r̂, so
that si = r(xi) + εi, i = 1, ..., n. The Gaussian
kernel was used to define the kernel function as
K(x) = 1√

2π
exp(−x

2

2).

Then, the function r̂ of kernel regression [6] was
defined as follows:

r̂(x) =

∑n
i=1K(xi−x

h)∑n
i=1K(xi−x

h)
∗ si (1)

Where h was the bandwidth, computed by the
cross-validation least-squares function. After
smoothing, a new evolutionary vector was ob-
tained, S

′

p = {s′1, s
′

2, ..., s
′

n}. On average, the
R-Squared coefficient for each Kernel regression
model is 0.85 (median is 0.95) in our study.
• Step-3: Resampling. Next, one-dimensional

linear interpolation [7] was used to resample our
data, which returns one-dimensional piecewise lin-
ear interpolants to a function with given values at
discrete data-points. For a given xr, the value of
ŝr is computed by the following:

ŝr =
s
′

i ∗ (xj − xr) + s
′

j ∗ (xr − xi)
xj − xi

(2)

Where (xi, s
′

i) and (xj , s
′

j) represent two known
points in our smoothed data, and the xr is rep-
resented in the interval (xi, xj). For each project
p, its resampling interval is set as n

20 . Thus, af-
ter resampling, each project has a 20-dimensional
vector ({ŝ1, ŝ2, ..., ˆs20}) that characterizes its evo-
lutionary trajectory. Since different projects may
have different dockerfile scales, each project’s vec-
tor value was normalized for comparison.
• Step-4: Clustering. Finally, the well known

K-means algorithm [8] was used to cluster our
dockerfile scale evolutionary trajectory vectors. K-
means stores k centroids used to define clusters. A
point is in a cluster if it is closer to that cluster’s
centroid than any other centroid. Based on the
initial set Ŝ = {Ŝ1, ..., Ŝi, ..., ŜN}, Ŝi ∈ R20 (N is
the total number of projects), and a fixed posi-
tive integer, k, K-means can converge to a set of
k cluster centroids, C = {C1, C2, .., Ck} in R20, by
minimizing the “K-means cost”:

ΦS(C) =
∑
Si∈S

min
Cj∈C

||Si − Cj ||2. (3)

Afterwards, each Si (i ∈ N) was marked with a
specific cluster label, i.e., Cluster-j (j ∈ k).

Our results. Data from two communities Docker
Hub3) and GitHub4) were obtained (see Appendix
B in the supporting information for details). Be-
fore performing our approach, the heatmap of the
Dockerfile scale evolutionary trajectories of 2,840
projects was drawn (see Figure B1). By observing
the color change trends, six clusters with signif-
icant differences were found. Thus, the number
of clusters was set as k=6 in our K-means clus-
tering process. After clustering all the projects’
evolutionary vectors, we marked each project as
belonging to one of the six categories (C1∼C6).

3) https://store.docker.com
4) https://github.com

Ac
ce

pt
ed

Downloaded to IP: 117.136.88.39 On: 2018-07-11 15:43:37 http://engine.scichina.com/doi/10.1007/s11432-017-9415-3

Zhang Y, et al. Sci China Inf Sci 3

For each cluster, the dockerfile scale variation
curves of samples were drawn and case studies on
randomly selected projects were conducted to val-
idate the clusters. After our manual analysis, the
specific paradigms describing the evolution trajec-
tories of the six clusters were summarized, as fol-
lows (see App. C in the supporting information
for details).
[C1] Increasing and holding. This cluster com-
prises 21.8% of the projects. In this paradigm,
developers added new instructions or new settings
to the dockerfile in early periods. However, af-
ter reaching to a certain size, they just updated
the basic environment variables or changed the lo-
cation of instructions. Thus, the dockerfile scale
stayed stable.
[C2] Constantly growing. This cluster com-
prises 31.6% of the projects. In this paradigm,
developers kept adding services, support, or plu-
gins to the dockerfile, causing its scale to contin-
ually increase. Compared with other paradigms,
the evolution path of this paradigm is easiest to
understand.
[C3] Holding and increasing. This cluster com-
prises 19.2% of the projects. In this paradigm, de-
velopers just updated the basic environment vari-
ables in early periods, keeping the dockerfile scale
stable for a while. Then, new instructions, plug-
ins, or support were added, and the dockerfile scale
increased.
[C4] Increasing and decreasing. This cluster
comprises 10.2% of the projects. In this paradigm,
developers kept adding new instructions in early
periods, increasing the dockerfile scale. However,
after reaching a large size, maintainers tried to re-
construct the dockerfile by moving useless plug-
ins/services or moving settings to additional script
files, reducing the dockerfile scale in later periods.
[C5] Holding and decreasing. This cluster com-
prises 9.5% of the projects. In this paradigm,
developers change little in early periods and the
dockerfile scale is stable. In later periods, devel-
opers tried to change the dockerfile structure by
moving some instructions to additional script files
or using a more light-weight base image, so the
dockerfile scale dropped.
[C6] Gradually reducing. This cluster com-
prises 7.7% of the projects. In this paradigm,
developers kept removing useless instructions or
changed the base image to reduce image layers,
continually decreasing the dockerfile scale. How-
ever, the decrease slows in later periods.

The differences between projects in the six clus-
ters were further contemplated, and we found that
they differ in project age and average dockerfile
scale, indicating they have different project devel-
opment stages and goals (see Appendix D in the

supporting information for details).
Conclusion. This research studied the dock-

erfile evolution in Docker projects and proposed
a clustering-based approach for mining docker-
file evolutionary trajectories that reveal projects
of similar stages and goals. After performing
an empirical study on 2,840 projects, six notable
paradigms of the dockerfile scale evolutionary tra-
jectories were obtained. Through case studies,
each paradigm was summarized in detail. Our ap-
proach benefits future and current Docker project
maintenance by providing a discrete characteriza-
tion of dockerfile scale evolution over many ex-
isting projects, thus allowing co-localization of
similar projects. Also, the proposed approach is
generic and can be used to study general infras-
tructure configuration file evolution.

Acknowledgements This work was supported by

the National Natural Science Foundation of China

(Grant No. 61502512, 61432020), China Scholarship

Council, and the USA NSF (Grant No. 1717370). Part

of this study was performed during the visit in 2017

by the first author at the DECAL lab, UC Davis.

Supporting information Appendix A-D, and Fig-

ure B1. The supporting information is available on-

line at info.scichina.com and link.springer.com. The

supporting materials are published as submitted, with-

out typesetting or editing. The responsibility for sci-

entific accuracy and content remains entirely with the

authors.

References
1 C. Anderson. Docker [software engineering]. IEEE

Software, 2015, 32(3): pp. 102-c3.
2 D. Bernstein. Containers and cloud: From lxc to

docker to kubernetes. IEEE Cloud Computing, 2014,
1(3): pp. 81-84.

3 D. Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux Jour-
nal, 2014, 2014(239): p. 2.

4 D. Jaramillo, D. V. Nguyen, and R. Smart. Leveraging
microservices architecture by using docker technology.
In: Proceedings of SoutheastCon. IEEE, 2016. pp.
1-5.

5 N. S. Altman. An introduction to kernel and nearest-
neighbor nonparametric regression. The American
Statistician, 1992, 46(3): pp. 175-185.

6 G. C. Cawley and N. L. Talbot. Fast exact leave-
one-out cross-validation of sparse least-squares sup-
port vector machines. Neural networks, 2004, 17(10):
pp. 1467-1475.

7 M. J. Powell. A direct search optimization method
that models the objective and constraint functions by
linear interpolation. Advances in optimization and nu-
merical analysis. Springer, 1994, pp. 51-67.

8 J. A. Hartigan and M. A. Wong. Algorithm as 136:
A k-means clustering algorithm, Journal of the Royal
Statistical Society. Series C (Applied Statistics),
1979, 28(1): pp. 100-108.

Ac
ce

pt
ed

Downloaded to IP: 117.136.88.39 On: 2018-07-11 15:43:37 http://engine.scichina.com/doi/10.1007/s11432-017-9415-3

info.scichina.com
link.springer.com

