2015 IEEE Symposium on Service-Oriented System Engineering

OSSEAN: Mining Crowd Wisdom in Open Source Communities

Gang Yin, Tao Wang, Huaimin Wang, Qiang Fan, Yang Zhang, Yue Yu, Cheng Yang
National Laboratory of Parallel and Distributed Computing
School of Computer, National University of Defense Technology
ChangSha, Hunan, China
yingang@nudt.edu.cn, taowang.2005@outlook.com, whm w@163.com

Abstract—Nowadays open source software represents a
successful crowd-based software production model and is
becoming an ecosystem combining huge amounts of software
producers (such as software developers) and consumers (such as
software users and customers). Lots of research work has been
conducted on analyzing software artifacts created by producers,
but few of them reveal the power of feedback from consumers
which we believe is very important for the evaluation and
evolution of open source software. This paper introduces
OSSEAN, a platform for Open Source Software Evaluating,
Analyzing and Networking. OSSEAN divides the open source
communities into two groups: software production communities
and software consumption communities. The former contain
structured software artifacts such as projects, source code and
issues, while the latter are full of textual documents with rich
semantics of user feedback. We show the power of OSSEAN with
some interesting demos by analyzing more than 200 thousands of
open source projects and 10 million documents.

Keywords—Open Source; Crowd Wisdom; Software
Production Communities, Software Consumption Communities;
OSSEAN

L INTRODUCTION

Open source communities successfully leverage the power
of the crowd in software production, and have great impacts on
many stages of software development and applications in a
global open source ecosystem. With the development and
division of open source communities, software programmers
and testers are attracted by software production communities
such as SourceForge and Github, while the newcomers, users
and customers are more likely going to software consumption
communities such as StackOverflow, Slashdot and CSDN
(http://www.csdn.net, the biggest IT community site for
Chinese speaking users in the world). These two kinds of
communities complement each other and greatly expand the
scope of traditional software development activities to global
software evaluation and evolution.

The production communities mainly help software
developers manage their development processes and artifacts.
For example, Github provides development tools such as
version control and issue tracking, and social communication
tools such as @mention [1]. SourceForge provides more
complete toolkits for distributed collaboration and management,
including mailing lists, feature request, etc. These tools store
huge amounts of software engineering data for structured
software artifacts. On the other hand, the consumption
communities are usually the crowd-oriented knowledge sharing
platforms attracting tens of millions of users. The data
generated in in these communities are usually textual posts
which are reacting more quickly than the development requests

978-1-4799-8356-8/15 $31.00 © 2015 IEEE
DOI 10.1109/SOSE.2015.51

submitted in production communities. For example,
StackOverflow has an answer rate above 90% and a median
answer time of only 11 minutes [2], while the average
responding time for an issue in Android issue tracking system
(a typical production community) is about 31 days. The
consumption communities are becoming the source of the
crowd wisdom for the evaluation and evolution of open source
software in production communities.

We propose a new approach, OSSEAN (Open Source
Software Evaluating, Analyzing and Networking), to leverage
the crowd wisdom in consumption communities to support the
software development in production communities. OSSEAN is
composed of two steps: firstly collects the set of documents in
consumption communities for each software in production
communities, then use the documents to make evaluation,
comparison and ranking for the software. According to our
experiments, OSSEAN successfully discovers more than 8§
million documents for more than 238 thousands projects. In
this paper, we use three promising demos to show the potential
applications of OSSEAN.

The structure of this paper is as follows. In Section II some
closely related systems are introduced and discussed. In
Section III key mechanisms of our approach are described. In
Section IV, we show some preliminary but promising demos of
OSSEAN. We conclude the paper in Section V.

II. RELATED WORK

A lot of research work has been conducted on collecting
and mining data in open source communities.

The large amounts of high-quality source code publicly
available over the internet have attracted great attention from
researchers. Sushil et. al constructed an Internet-scale software
repository Sourceer [7]. It employs the structural information
like reference in source code, the dependences between
libraries and so on to achieve large scale source code indexing
and searching. OCEAN [8] present a federated search engine
that simultaneously retrieves source code from existing open
source code search engine sites including Koders, Krugle,
Merobase and Google Code.

In industry, many analysis tools and services have been
provided by different companies. Coverity Scan [9] mainly
focus on analyzing the quality and security of open source
software by providing scan and test services. Converity Scan
helps developers to identify critical quality and security
defects that are hard to find by other methods, and can provide
valuable information for users to locate and fix the identified
defects. Until March 2014, the lines of source code they scan
have reached 300 million. Many famous open source projects

IEEE
computer
® psouety

such as FreeBSD, HBase and CloudStack benefit much from
this service.

As a famous open source software management solution
provider, Black Duck [10] has built a massive open source
knowledge base named BlackDuck KnowledgeBase. It
collects more than 1 million open source software from 7.5
thousands open source sites. In this knowledge base, they
cover more than 100 million lines of source code and more
than 2 thousands of different licenses. They build code search
engine Koders and open source community OpenHub.

Most of these works focus on the static source code of
open source software, and little attention has been paid on the
user feedback in consumption communities.

III.

To make better use of the data generated in open source
ecosystems, we design and implement OSSEAN—an Open
Source Software Evaluating, Analyzing and Networking
platform. OSSEAN aims to bridge the production communities
and consumption communities to retrieve the knowledge
hidden among different communities, which are very important
for software evaluation and evolution in Internet. In this section
we introduce some important design considerations and the
data source of the platform.

THE OSSEAN PLATFORM

A. Architecture

The OSSEAN architecture mainly consists of three layers:
acquisition layer, analysis layer and presentation layer.
Through the cooperation of the three parts, OSSEAN achieves
the automatic data processing and mining for multiple
production communities and consumption communities. Figure
1 presents an overview of the architecture.

| Crawler 2

Crawler 1

Crawling Templates

Frequency Configuration

Storage Templates

l Page download l-| Transaction Scheduling |

l Page download l —| DataAccess | ACEI;?;mn
Original Data
Verification Extraction Data mining
algorithms
[Relational Data] E— 3 A::e::rls
[Application Data]

Hot
Software

Hot
Task

Innovation
Situation

Software
Rank

Presentation
Layer

=)

J(

J=)

test.ossean.trustie.net »
Industrialization

Figure 1: The architecture of OSSEAN

368

OSSEAN cuts the correlation between different modules in
the three layers to a fullest extent. The communication between
different modules is achieved through event service and
database operations, so that each module can be developed and
deployed by independent teams. Each module retrieves its
input data from database and then notifies the next module by
sending a specified event, with a relatively stable interface
between each other. All modules in OSSEAN cooperate as in
an assembly line.

The crawler module in acquisition layer is the engine of
OSSEAN by crawling raw web pages from the two kinds of
communities. A crawler will be created and deployed when a
community is added as a new data source. Each crawler
monitors a specified community site and retrieves data (raw
web pages or API data) according to the predefined data model.
Finally, the data crawled by crawler will wait for being
analyzed by data extraction module. Here, the wrong data will
be moved and the missing data will be re-crawled. Then, the
data analysis module will construct the mappings between
software projects and documents, and use the result to evaluate
each project, such as analyzing the trend of projects and
ranking them by popularity.

The modules in presentation layer are mainly designed for
demonstration of the above results, including operations such
as searching and ranking. Each module obtains data from the
database schema of previous module, and saves result in its
own schema. The results of data analysis will be placed in the
data pool, prepared for presenting in platform. In order to
provide a high quality data service, we have two online
systems for OSSEAN: one is a testing system, and the other is
a production system.

B. Date Source

OSSEAN collects data from both production communities
and consumption communities. The first problem we met is
what communities should be selected as data sources. Take
development communities as example, Wikipedia lists more
than 20 open source hosting websites such as SourceForge and
Github, and there are thousands of community websites for
interdependent open source organizations such as Linux,
Apache, Eclipse, OW2, etc. As to consumption communities,
there are far more candidates for consideration, such as
StackOverflow, Slashdot, CSDN and OsChina (the last two are
famous in China). We rank the communities according to their
popularity.

(1) Data source from production communities:

We select two of the most popular development
communities (SourceForge and GitHub) and one directory
community (OpenHub). The number of projects and Alexa
rank are shown in table 1. GitHub is a repository hosting
community. It hosts 10,392,468 repositories up to August 2014.
However, usually a software project can be forked many times
in Github, and therefore a lot of repositories can be created for
one project. So we use the number of root repositories as the
number of projects in Github.

Among the total projects in these communities, there are
lots of projects that are created just for a try of the community
tools, these projects have few value and are the main cause of
disturbance in later data processing. Another data disturbance
is the duplicates of projects among different communities. To
make sure that only active and useful projects are selected as

data source, we implement the following filtering polices: (1)
remove the projects that either of its number of stars or
downloads is zero; (2) rank the root repositories by their scores
in Github and chose the first 116,850, where the score of each
repository is the sum of its forks, watchers and commits in
Github; (3) rank the projects by their scores in OpenHub and
chose the first 98,833, where the score of each repository is the
sum of its number of users, reviews and contributors in
OpenHub. The statistical results are shown in table 1.

TABLEI. SOFTWARE PRODUCTION COMMUNITIES
Site Name Total Projects | Selected Projects Alexa P()p.ulartty
Ranking
1 GitHub 3,099,089 116,850 98
2 SourceForge 411,716 48,712 217
3 OpenHub 664,620 98,833 28,419
Total 4,175,425 264,395 —
Without Duplicates — 238,467 —

(2) Data source from consumption communities:

There are much more consumption communities than
production communities in Internet. We select most popular
and hottest communities as our data source, mainly referring to
their Alexa Rank (a websites ranking system provided by
alexa.com according to the frequency of visits). Table 2 shows
the number of posts collected from popular communities up to
December 2014, including some famous Chinese communities.
The posts are various kinds of documents generated in these
communities for Q&A, discussion and sharing among users.

TABLEII. SOFTWARE CONSUMPTION COMMUNITIES
Sites Posts Alexa Poeulariw
Ranking
1 http://stackoverflow.com/ 7,205,198 59
2 http://www.csdn.net/ 848,998 442
3 http://www.cnblogs.com/ 4140 1,241
4 | http://www.codeproject.com/ 187,692 1,346
5 http://slashdot.org/ 45,203 1,484
6 http://www.oschina.net/ 382,200 1,632
7 http://www.iteye.com/ 92,545 2,441
8 http://www.dewen.io/ 16,229 159,508
9 http://www.zdnet.com/ 43,644 18,400
10 | http://www.lupaworld.com/ 29,541 210,871
Total 8,855,390 —

C.

Data Acquisition

The two kinds of communities are publicly available, but
distributed dispersedly over the whole Internet. It is a great
challenge to retrieve such kind of data continuously and
automatically. The task of acquisition layer is obtaining data
from these community sites. OSSEAN uses APIs provided by
community web site and web crawlers to construct a data flow
storage and management platform. For data crawling, it mainly
consists of two interdependent processes: firstly crawls the raw
web pages, and then extracts the attributes from the web pages.
We know that most data collecting platform extracts the page
information simultaneously while downloads web pages, but
this is not the good solution for the changing and growing sites.

This design is necessary for the insurance of data quality,
which is very important for the retrieval of open-source data.
We cannot identify whether an error is created in the process of
crawling or extraction when extracted information is wrong.
Because of this, the conventional methods may introduce a lot

369

of low-quality data and data checking task is very difficult, and
thus easily bring a lot of problems to the next stage of data
analyzing. In order to improve the quality of acquired data, we
add a new verification step into extracting process. The
following are the details about these three processes.

Crawling process: A crawler in OSSEAN uses target-
oriented retrieval policies. This process contains two steps. A
crawler firstly crawls all the lists from a community and
extracts the links of every item (here an item is an open source
project). Then, the target pages referred by these links are
downloaded and stored in database. Here we use multi-
threaded techniques to improve performance. However, in
order to prevent disturbing the performance of target
communities, we set our crawling speed to a very low level.

Extracting process: This process extracts key attributes
from raw web pages. Usually, different community sites have
totally different page templates. Thus, we design corresponding
extraction templates separately for each site. OSSEAN will
automatically select right template to extract the input page
according to its “site” name. The extracted attributes will be
stored in database (here we use MySQL to stall these structured
data).

Verifying process: This process verifies the potential
errors exist in the crawling and extracting process. Verification
of the extracted attributes will be invoked just after all pages
are extracted. Different attributes have different verification
methods. For example, a “time” related attribute (such as the
“publish time” of a post) will be checked whether it has a right
time format; while for the title of a post, it will be checked
whether it is a valid textual string. In this process, the error
handing module of each site will also locate the position of the
error, either in download module or extraction module. The
verification results will be logged for providing further bug-
fixing instructions.

OSSEAN provides a plugin-based structure for adding new
communities. The code framework for the three processes will
be created and developers need only to change the extraction
templates and verification templates.

D. Data Bridging

OSSEAN builds connections between production
communities and consumption communities. Bridging two
kinds of communities can be seen as a classification of posts to
software project names, but we cannot use the conventional
method to complete this classification. First, there is no training
set for us to train a classification model, and clustering
algorithm has the problem of discerning the body of each class.
Second, there are many projects germinating every day, which
makes it hard to build a stable model. Therefore, we use text
matching method to solve this problem. For each post, we
consider three attributes — tags, title and content. OSSEAN
performs the matching in three steps — data preprocess, index
building and entity matching. The following is the detail about
the three steps.

Data preprocess: This step integrates the data from
different communities. The data from different communities
have different structure, so we define a standard structure for
two kinds of communities. For example, the basic data
structure of a post is a 13-tuple (subject, abstract, content,
author, number of replies, number of views, type, category,
created time, updated time, crawled time, URL, site), while that

of a project is a 13-tuple (name, description, language, number
of followers, number of downloads, number of views, number
of committers, category, created time, updated time, crawled
time, URL, site).

For production communities, we also aggregate the
multiple occurrence of a same project across different
communities into one project.

Index Building: All the posts in OSSEAN are indexed
according to their three attributes (tags, title and content). Each
post is segmented and then its inverted index is created.
Therefore, it will be very fast to answer queries such as
whether a post contains a project name.

tags

S

. Open Source
title

=

posts

Software
® Stackoverflow ® Github
® Oschina o @ SourceForge
® Csdn 3
h content @ Opentivb

Figure 2. The flow of the matching process

Entity Matching: Given a post, each kind of its attributes
is attached a weight @;, as shown in figure 2. OSSEAN uses
string comparison to match tags matching, i.e., if the tag list of
a post contains the software name then we get a positive match.
OSSEAN uses index-based search for title and content
matching, i.e., the name of the software will be used as a query
term to search in the index. The score of the match is the sum
of @, where the match i should be successful. Currently,
OSSEAN set @;, m; and w; to 1, 0.8 and 0.5 respectively.

Text matching method has many advantages in data
bridging, but it also performs poorly in some cases. For
example, it cannot confirm whether a term in a post refers to a
software project even when the term is identical to the name of
that project. Another case is that different projects may share
similar or even same names. We are using some techniques to
resolve these problems, such as Apriori and SVM.

IV. PRELIMINARY RESULTS

With the continuous growth of community data, OSSEAN
can provide lots of interesting services by mining the crowd
wisdom in open source communities. This section shows some
preliminary results and demos.

A. Ecosystem Measurement

OSSEAN can answer some basic questions related to the
scope and scale of the global open source ecosystem, such as:
(1) How many open source organizations and software
projects in production communities? (2) How many posts (or
documents) in consumption communities are related to open
source projects?

These questions are related to the global development of
open source software ecosystem. As shown in figure 3, from
2008 to 2014, the number of organizations in Github goes up
to the highest point 118845. Furthermore, we investigate the
quantity of answer posts and question posts in StackOverflow.
Both the number of answers and questions are increasing

370

steadily to the highest points 12517744 and 7148960 as shown
in figure 4. This indicates that the open source communities
attract more and more organization as well as users to
contribute and participate.

140000
118845

100087
53628

2012 2013 2014

120000
100000
80000
60000

40000
3227

2
20000 a6 R I
0o — — |

2008 2009 2010 2011

The number of organizations in Github

year

Figure 3: The number of organizations in Github in different years

i ANSWETS == A= quUEStiONS

14000000

12517744
11241011

12000000

10000000

8000000

6000000

4000000

2000000 1203519 - K

229686 [|
A 1161931
5 oo e 407556

2008 2009 2010

The number of posts in Stackoverflow

2011
year

2012 2013 2014

Figure4: The number of posts in StackOverflow in different years

B. Software Ranking

OSSEAN can help users find the favorable software based
on the popularity of its related posts. Some key issues should
be properly addressed, such as: (1) How to compute the
popularity of a post? (2) What is the rank of a software project
in the global open source ecosystem?

Compared with the traditional software ranking
mechanism, we sort the software projects by the set of posts
related to them. The basic idea is that, the more posts a
software project successfully matches, the more popular this
project is and should be sorted forward. In our observation, we
find that different posts have different impacts. In order to
distinguish these differences, we use the number of comments
for judging the popularity of a post. We denote the popularity
of a post by the score of this post. The following is the
formula for computing the score of post p:

Score(p) = comments(p) / timedi]f(p)

{ttmedlff(p) =time,, (p)- time,,,, (p)

Where Score(p) is the score of post p. comments(p) is
the number of comments of post p. timediff (p)is the time
interval between post p is opened and now.

The rank of a software project is determined by the sum of
scores of its posts. However, we find that in many cases one
post may discusses more than one project. To avoid bias, we
use the average score to calculate the software rank.

Rank(s)= ; software(p,)

Where Rank(s) is the rank of projects . software(p,.) is
the number of software discussed in the post p,. n is the
number of posts associated with the software s .

Table III shows the top-10 software in the database
category after our ranking process.

TABLE III. THE TOP-10 SOFTWARE IN THE DATABASE CATEGORY
Rank. Software #Posts Rank Value
1 MySQL 289659 5793.18
2 PostgreSQL 33744 745.66
3 MongoDB 37283 710.48
4 SQLite 35524 674.88
5 cassandra 5381 205.84
6 Redis 5642 112.84
7 Solr 10292 107.62
8 Teradata 1044 55.64
9 Filemaker 575 20.88
10 habase 2782 11.50

C. Opinion Analysis

OSSEAN can further analyze the associated posts to find
the opinion discussed about the software and answer some
interesting questions related to the hot topics and development
trend of the global open source communities, such as: (1)
What are the hot topics of a software? (2) What is the current
development trend in the global open source communities?

We utilize a clustering method to classify the words of
posts into topics. This clustering method gives a similarity
degree of association between words and topics. The method
calculates a degree of similarity sim(word,topic;) between
words W={word,,...,word,,...,word,} and existing topic
clusters T={topic,,...,topic,...,topic,}. The word is classified
into the maximized cluster topic; when sim(word,,topic))
exceeds threshold 7. On the other hand, if sim(word,topic;) is
less than threshold 7, we classify the word into a new cluster
topicy+;. The threshold 7 is determined empirically. Finally, we

can find the hot-topics in the discussion of the software.

As shown in figure 5, in the global open source
communities, “Android” is the hottest topic, which indicates
that more and more users or developers focus on the
development of mobile software.

Ubuntu

Figure 5: Hot topics in OSSEAN

371

More specifically, hot topics can be used to indicate the
trend of user requirements and technical movements. There
are lots of researches can be conducted in OSSEAN.

V.

We propose a new approach, named OSSEAN, for mining
software community data with a global vision in mind.
OSSEAN treats open source communities as a global
interconnected ecosystem. It divides Internet-based
communities related to open source software into two groups:
production communities and consumption communities. We
believe OSSEAN will give more practical help to improve the
quality and efficiency of global software engineering using
data mining and machine learning tools in near future.

Currently, OSSEAN emphasizes on constructing and
improving its data flow storage and management platform
based on the two kinds of communities. More interesting
demos powered by advanced data analysis algorithms will be
launched in http://ossean.trustie.net.

CONCLUSIONS

ACKNOWLEDGMENT

Many thanks should be given to Trustie team members,
especially to Chongming Gu, Chenxi Song, Yiang Gan, Ming Wu,
Fang Zhang, Yun Zhan, Bingxun Liu and Ming Xiao for their
valuable engineering work. We also want to thank reviewers for their
valuable comments. The research is supported by the National High
Technology Research and Development Program of China (Grant
No. 2012AA011201) and National Science Foundation of China
(Grant No.61432020 and 61472430).

REFERENCES

Yue Yu, Huaimin Wang, Gang Yin, Charles X. Ling. Reviewer
Recommender of Pull-Requests in GitHub. The 30th IEEE International
Conference on Software Maintenance and Evolution (ICSME 2014
TOOLS), Victoria, Canada, 2014.

Lena Mamykinal, Bella Manoim2, Manas Mittal3, George Hripcsakl,
Bjorn Hartmann3. Design lessons from the fastest q&a site in the west.
Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM, 2011: 2857-2866.

M. Hahsler and S. Koch. Discussion of a large-scale open source data
collection methodology. In HICSS, 2005.

J. Howison, M. Conklin, and K. Crowston. Flossmole: A collaborative
repository for floss research data and analyses. International Journal of
Information Technology and Web Engineering, 1(3):17-26, 2006.

Audris Mockus: Amassing and indexing a large sample of version
control systems: Towards the census of public source code history. MSR
2009: 11-20.

K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, and
S. Kusumoto. Component rank: Relative significance rank for software
component search. In ICSE’03, pages 14-24, 2003.

Bajracharya S, Ossher J, Lopes C. Sourcerer: An internet-scale software
repository. In Proceedings of the ICSE Workshop on Search-Driven
Development-Users, Infrastructure, Tools and Evaluation. 2009: 1-4.

Kokkoras F, Ntonas K, Kritikos A, Kakarontzas, G, Stamelos, I.
Federated Search for Open Source Software Reuse. In Software
Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on. 20012: 200-203

Guo, Philip J., and Dawson R. Engler. "Linux Kernel Developer
Responses to Static Analysis Bug Reports." USENIX Annual Technical
Conference. 2009.

Bagley C E, Lane D. Black Duck Software. Case Study. Harvard
Business School Publishing, 2006.

(1]

[2]

[3]

(4]

[3]

(6]

[7]

(8]

(9]

[10]

