
Within-Ecosystem Issue Linking: A Large-Scale Study of Rails
Yang Zhang

National University of Defense
Technology, China

yangzhang15@nudt.edu.cn

Yue Yu
National University of Defense

Technology, China
yuyue@nudt.edu.cn

Huaimin Wang
National University of Defense

Technology, China
hmwang@nudt.edu.cn

Bogdan Vasilescu
Carnegie Mellon University, USA

vasilescu@cmu.edu

Vladimir Filkov
DECAL Lab, University of California,

Davis, USA
filkov@cs.ucdavis.edu

ABSTRACT
Social coding facilitates the sharing of ideas within and between
projects in an open source ecosystem. Bug fixing and triaging, in
particular, are aided by linking issues in one project to potentially
related issues within it or in other projects in the ecosystem. Iden-
tifying and linking to related issues is in general challenging, and
more so across projects. Previous studies, on a limited number of
projects have shown that linking to issues within a project asso-
ciates with faster issue resolution times than cross-project linking.
In this paper, we present a mixed methods study of the relationship
between the practice of issue linking and issue resolution in the
Rails ecosystem of open source projects. Using a qualitative study of
issue linking we identify a discrete set of linking outcomes together
with their coarse-grained effects on issue resolution. Using quan-
titative study of patterns in developer linking within and across
projects, from a large-scale dataset of issues in Rails and its satellite
projects, we find that developers tend to link more cross-project
or cross-ecosystem issues over time. Furthermore, using models of
issue resolution latency, when controlled for various attributes, we
do not find evidence that linking across projects will retard issue
resolution, but we do find that it is associated with more discussion.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software de-
velopment;

KEYWORDS
GitHub; Software ecosystem; Issue linking

ACM Reference Format:
Yang Zhang, Yue Yu, HuaiminWang, Bogdan Vasilescu, and Vladimir Filkov.
2018. Within-Ecosystem Issue Linking: A Large-Scale Study of Rails. In
Proceedings of the 7th International Workshop on Software Mining (Soft-
wareMining ’18), September 3, 2018, Montpellier, France. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3242887.3242891

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoftwareMining ’18, September 3, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5975-7/18/09. . . $15.00
https://doi.org/10.1145/3242887.3242891

1 INTRODUCTION
GitHub is a platform for sharing of code and ideas, characterized by
unprecedented transparency in distributed software development,
where developers can effortlessly follow, if not contribute them-
selves, to work across different projects. Such social coding has led
to enhanced code reuse and collaborations; it is not uncommon to
find prolific developers in GitHub contributing code across different
projects, thereby bridging different communities [21]. As a result,
code from an ever larger corpus is shared and reused [12], with
many projects depending on the same libraries and components.
This contributes to the co-evolution of projects and the formation
of ecosystems [14], e.g., Rails [9], where code across related projects
becomes interdependent.

In addition to the benefits of reuse, life in an ecosystem of in-
terdependent projects may also pose challenges, especially around
issue resolution. Indeed, ecosystem-level knowledge about bug
triaging [15] and fixing [5] must now be shared between devel-
opers within and across projects. And just like code in a project
becomes entangled with code in the rest of the ecosystem to which
it belongs, so do defects. One manifestation of this is that many
open issues in one project get linked to related issues, in the same
or different projects, as developers are tracing the root causes of a
problem [18]. Prior work has found, in a handful of open-source
projects part of the Python scientific computing ecosystem, that
bugs linked across projects are considered more severe by develop-
ers, and take longer to resolve than those with within-project or no
links [18], just as socio-technical theory of coordination [6] might
predict (because of the increased coordination costs to keep track of
cross-project activities). Similar results have been obtained among
independent projects: identifying and linking to related issues is
challenging [3], and the benefit of linking between dissimilar issues
is often tenuous—linked issues take longer to resolve on average
than unlinked ones.

However, for co-evolving, interdependent projects, i.e., projects
in the same ecosystem (exact definition in §3.1), one could also make
the opposite argument. Indeed, a mature ecosystem can operate as
a well-oiled machine; the code co-dependencies between projects
facilitate information brokerage, thereby enhancing the developer
community’s transactive memory [19]. In turn, this may facilitate
issue resolution.

Better understanding the ecosystem-level issue linking prac-
tices of developers, and how these might affect issue resolution,
can immediately pay dividends in informing the development of

12

https://doi.org/10.1145/3242887.3242891
https://doi.org/10.1145/3242887.3242891

SoftwareMining ’18, September 3, 2018, Montpellier, France Zhang, Yu, Wang, Vasilescu, and Filkov

ecosystem-level issue triage tooling. More generally, it can also shed
light on socio-technical coordination challenges faced by developers
in an ecosystem. To that end, this paper reports on a mixed-methods,
quantitative and qualitative case study of Ruby on Rails (hereafter
Rails), that aims to understand the relationship between linking
practice and issue resolution from an ecosystem perspective. We
chose Rails for our case study as it forms one of the largest and
most active projects on GitHub, with a long history and an ecosys-
tem comprising tens of thousands of interconnected projects [2].
Part of our study can be considered an extended replication of Ma
et al.’s [18] study of cross-project issue linking in seven GitHub
projects from the scientific Python community: we have similar
research goals, but we use much larger data sets and statistical
modeling techniques that account for covariates.

Specifically, we start by qualitatively studying linking outcomes
to better understand the patterns in the linking practices and their
potential effects on issue resolution. We find that:
• There are six notable categories of linking outcomes and they
may have different effects on issue resolution.
Guided by that, we then perform a quantitative study. We mine

data from GitHub issues and build an approximation of the ecosys-
tem of projects centered around Rails, linked to each other based
on cross-referenced issues (via issue comments) within and across
projects. Through analysis of link data, we investigate developers’
linking practices and their participation in issue resolution after
the linking, as well as their evolution over time. Then, by sepa-
rately regressing issue resolution latency and discussion length
over variables of interest and various controls, we investigate how
the linking practice affects the manners of issue management and
resolution. The highlights of our quantitative findings are:
• Although developers tend to contribute most of their work
within the project and ecosystem, interestingly, they show more
diversity in linking practices by referencing more cross-project
or cross-ecosystem issues over time.

• In contrast with the work by Ma et al. [18], we do not find
evidence for increased resolution latency of issues linked to
other issues outside the project.

• Issues linked outside of the project where they arise also have
longer discussions.
Our data and scripts are online at https://github.com/yangzhangs/

ecolinking_replication.

2 RESEARCH QUESTIONS
Issue resolution in GitHub is a collaborative and complex process.
After a developer submits a new issue, other developers would
discuss and evaluate this issue to see if it is worth fixing and, if so,
to prioritize its fix. Linking can be an important step in the issue
resolution process, as during their discussion stakeholders may link
internally or externally to related issues, in order to provide what
they consider are useful resources and information. The GitHub
platform makes it easy to link to another issue or pull request
from the same project or even different projects (see an example
in Figure 1), via its Flavored Markdown technology. Eventually,
helped by links and discussions, developers submit fix commits
(e.g., pull requests) for the issue, and it will be resolved and closed.

rails/rails#6236

haml/haml#531

Figure 1: An example of the issue linking in GitHub. In is-
sue rails/rails#6236, developer rafaelfranca commented and
linked to issue haml/haml#531.

To be helpful, a link to another issue should be timely and rele-
vant to the current issue, as judged by a developer who posts it. But
its placement in the discussion also depends on the practices and
knowledge of the ecosystem’s interdependencies by the individual
developers, which may vary between developers (e.g., with expe-
rience), projects (e.g., with project culture), and even as the issue
progresses towards resolution (e.g., with time), as more information
about the root cause becomes available.

Based on the above discussion, it is reasonable to expect that dif-
ferent practices can lead to different outcomes in different projects.
To gauge the different sources of variability in issue linking prac-
tices, and as ground work for the two research thrusts below, we
start qualitatively by manually examining and coding a sample
of issue pairs with links within and across projects in the Rails
ecosystem:

Qualitative Study of Linking Outcomes: Identify the differ-
ent linking outcomes during the issue resolution process.

Guided by the qualitative outcomes, we proceed along two re-
search thrusts, the first aimed at understanding the linking practices
of developers that lead to the different linking related outcomes,
and the second aimed at understanding the factors affecting issue
resolution latency and issue discussion length.

Research Thrust 1. Linking Practices. In this thrust, we con-
sider spatial and temporal dimensions of issue linking:
RQ1-1.Where do developers link to?
RQ1-2. How do these linking practices change over time?

Research Thrust 2. Linking and Issue Resolution. Linking
to a very related issue may enhance a discussion and even hasten
the resolution of the original issue. But linking to a farther project
in the ecosystem or an issue that has been long closed may provide
diminishing returns. Having characterized the ecosystem level de-
velopers’ linking practice and involvement in terms of spatial and
temporal factors, we proceed to investigate how different aspects
of issue linking affect issue resolution time and discussion length.
Specifically, we ask the following questions:
RQ2-1. How do linking-related factors affect issue resolution?
RQ2-2. How do linking-related factors affect issue discussion?

13

https://github.com/yangzhangs/ecolinking_replication
https://github.com/yangzhangs/ecolinking_replication

Within-Ecosystem Issue Linking: A Large-Scale Study of Rails SoftwareMining ’18, September 3, 2018, Montpellier, France

3 METHODS
3.1 Definition of the Rails Ecosystem
We adopt Lungu’s [17] definition of software ecosystems, based
on technical dependencies that exist between constituent projects.
Blincoe et al. [2] proposed a new reference coupling method to
detect technical dependencies, by using cross-references on GitHub,
i.e., cross-project links. Their study results showed that those links
can be a good conceptualization of technical dependencies between
projects, so our ecosystem definition is based on their study.

We define the Rails ecosystem, as of November 2016, as Rails
together with all its immediately neighboring projects. Specifically,
we call issues that have in their discussions links to other issues
linked, or source issues, and issues that are linked to from other
issues’ discussions linked to, or target issues. We say that a pair
of issues, SA from project S and TB from project T , are a linked
pair, or link, (SA,TB), if the discussion on SA contains a link to
TB . We also call projects S and T linked in that case, and call S the
source project and T the target project.

Our operationalization, then, of the Rails ecosystem includes,
besides Rails itself, two types of projects: (1) Type X projects: all
projects X such that the discussion of at least one issue A in Rails
contains a link to an issue B in project X , i.e., RailsA→XB ; and (2)
Type Y projects: all projects Y in which the discussion of at least
one issue A contains a link to an issue B in Rails, i.e., YA→RailsB ,
but no issue in Rails is linked to an issue in Y . Note that projects
of type X may have issues that point back to issues in Rails, but
no issues in projects of type Y are a target of Rails issues. Thus the
sets of projects of type X and Y are disjoint. The time of our data
collection was November 2016.

Under this definition, we can classify each link into three cat-
egories: (1)Within-project links: source and target project are the
same, and the project is part of the ecosystem. E.g., rails/rails#1553→
rails/rails#1555; (2)Cross-project links (Within-ecosystem links):
source and target project are different, but they are both in the same
ecosystem. E.g., rails/rails#6236→haml/haml#531, both of which
we labeled as part of the Rails ecosystem; and (3) Cross-ecosystem
links: source and target project are different, and the target project
is not in the ecosystem. E.g., travis-ci/travis-ci#5562→nodejs/node-
gyp#693; while the former project does belong to the Rails ecosys-
tem, as per our definition, the latter one does not. Note that both
the within-ecosystem links and the cross-ecosystem links are links
across projects.

3.2 Data Set
Identifying Rails Related Projects. We choose a large and pop-
ular project on GitHub, Ruby on Rails (Rails) and projects related to
it as our case study. To identify related projects in the Rails ecosys-
tem, first, we collected all Rails issues and their comments using
the GitHub API before November 2016. By following the reference
coupling method proposed by Blincoe et al. [2], connections be-
tween projects can be identified by matching the specific pattern
“owner/repo#issueID” (e.g., rails/rails#1000) in the comments of is-
sues. We used regular expressions1 to perform pattern matching
and found projects with issues or pull requests mentioned in Rails

1github.com([a-zA-Z0-9-_.]+)/([a-zA-Z0-9-_.]+)/issues |pull/([0-9]+)

Table 1: Aggregate statistics of the 944 projects.

Statistic Mean St. Dev. Min Median Max

#closed issues 317.7 893.3 1 72 11,401
#closed, linked issues 74.6 275.8 1 13 5,439
#links 124.6 525.1 1 17 11,347
#within-project links 103.2 449.5 0 12 10,032
#within-ecosystem links 9.3 41.6 0 2 908
#cross-ecosystem links 12.2 71.4 0 1 1,491

(i.e., Rails→Proj.X). Also, we used the “cross-referenced” GitHub
API endpoint2 to find all related projects that referred to at least
one issue or pull request in Rails (i.e., Proj.Y→Rails). This yielded
1,204 projects, including Rails, 281 projects with issues linked to
from Rails issues (i.e., type X above), and 922 projects with issues
pointing to Rails issues (i.e., type Y).
Collecting and filtering data. Through the GitHub API, we col-
lected all data on issues, comments, and commits from all projects
in our Rails ecosystem. We then collected data on links, including
{source_project, source_issue, actor, target_project, target_issue, and
link_date}, by using text parsing and the “cross-referenced” API.
To focus on our analysis of the linking practices in GitHub issues,
we only consider the source issues that are general issues not Pull
Requests (PR). As for the target issues, we distinguish between PR
and general issues (this information is kept in the linkPR indicator
variable, see §3.4). Because we are interested in issue resolution
latency, we only discuss issues that have been closed. Also, we only
discuss those links in an issue that had occurred before the issue
was finally closed. After this filtering, we obtained our final set of
944 projects, 253 with issues linked-to from Rails issues (type X),
690 with issues pointing to Rails issues (type Y), and Rails itself.
Basic descriptive statistics. In total, our dataset contains 284,087
closed issues. Among them, there are 70,395 (24.8%) issues that get
linked and 114,185 linked pairs, or about 1.62 links per issue. 42.6%
of target issues were pull requests and the other 57.4% were general
issues. Table 1 presents aggregate descriptive statistics over the 944
projects in our dataset. We find that 82.8% of links were within-
project links and 17.2% were across projects (within-ecosystem:
7.4%; cross-ecosystem: 9.8%).

3.3 Qualitative Analysis
To gain insight into the outcomes of the linking practices, we used
open coding [10] to construct an inclusive set of linking outcomes.
First, we randomly selected 120 linked issues from our data and
removed one finally confirmed to be a duplicate, leaving 119 issues
from 64 projects. Then, during a first round, one author carefully
read the content of each sample and marked its keywords or state-
ments. Next, we sampled issues and discussed them jointly by all
authors. Later, we iteratively aggregated the descriptions and sum-
marized the categories, led by one of the authors, again discussing
and refining until reaching consensus.

3.4 Quantitative Analyses
Statistical Modeling. To discover relationships between linking
practices and issue resolution, we developed two regression mod-
els, Resolution latency model and Discussion length model, by using

2https://developer.github.com/v3/issues/timeline/

14

SoftwareMining ’18, September 3, 2018, Montpellier, France Zhang, Yu, Wang, Vasilescu, and Filkov

multiple linear regression modeling (via function lm in R). In our
models, we log-transformed variables where needed to stabilize
their variance and reduce heteroscedasticity [8]. We removed the
top 2% of the data to control outliers and improve model robustness.
The variance inflation factors, which measure multicollinearity of
the set of predictors in all our models, were safe, below 3. We use
the adjusted R2 statistic to evaluate the goodness-of-fit of our mod-
els. For each model variable, we report its coefficients, standard
error, significance level, and sum of squares (via ANOVA analysis).
Because each coefficient in the regression amounts to a hypothesis
test, we employ multiple hypothesis correction over all coefficient
results, to correct for false positives, using the Benjamini-Hochberg
step-down procedure [1]. We consider the such corrected coeffi-
cients noteworthy if they were statistically significant at p<0.05.

Regression variables. The outcome (dependent) variables of the
models are the issue resolution latency, issueLatency, in days, and
the discussion length in terms of the total number of comments,
nComments. There are several important stages during the reso-
lution of an issue, as per the linking time of different link types. In
our study, Issue resolution latency is the time interval between issue
creation and its final (the last) closing date. And we only consider
the resolution time of issues that are not PRs. Compared to the
previous links, the last link may have a significant impact on the
issue being closed, as, from an information theoretic perspective,
all other things being equal and given the large size of the data set,
the link before closing may have been most precipitative of the act
of closing. Thus, we use the target issue of the last link to extract
the linking-related factors.

In summary, our independent variables come from different
confound areas: project-level, developer-level, and issue-level.
• teamSize: number of contributors (who submitted at least one commit)

in the project prior to the issue creation time. Larger teams may be better
prepared to resolve issues;

• nIssues: number of issues created in the project during the three months
prior to issue creation, as context for the overall workload of the project;

• uContributor: Binary, True if issue submitter has contributed code
before the issue creation. This is a measure of previous interactions that
issue submitter has had in the context of the project;

• nActors: number of developers that participated in the source issue
resolution, as a coarse-grained proxy for developer involvement;

• ratioM , ratioCL, ratioCM , and ratioCML: percentage of participants
that do “M” ,“C+L”, “C+M”, and “C+M+L” activities in the source issue,
as a fine-grained proxy for developer involvement3;

• textLen: total number of words in the source issue title and description
text. Longer descriptions may indicate higher complexity of issue or
better documentation;

3We manually checked 100 linked issue samples and categorized the involvement
activities of developers into five categories:
- Just Managed (M): developers did only management work on the issue, e.g., adding
a label, closing, and reopening.

- Just Commented (C): developers just participated in the discussion by contributing
comments.

- Commented and Linked (C+L): developers commented, also they provided some
links in their comments.

- Commented and Managed (C+M): developers commented and performed a manage-
ment action.

- Commented, Managed, and Linked (C+M+L): developers commented, performed
management action, and provided links.

• hasAssignee, hasMilestone and hasLabel: Binary variables to encode
the presence of “assignee”, “milestone”, and “label” tags in the source
issue, as a measure of the project team’s responsiveness;

• isDifficult: True if the source issue was predicted as “difficult”, as a
proxy for issue difficulty4;

• linkLatency: time interval between the source issue creation and the
link creation, in days;

• linkClosed: Binary, True if the target issue has already been closed when
the last link was placed in the source issue;

• linkPR: Binary, True if the target issue was a pull request;
• linkTextLen: total number of words in the target issue’s title and de-
scription text, as a measure of issue complexity;

• textSim: text similarity (Cosine similarity) to the source issue, as a proxy
for issue relevance;

• linkPlace: types of links, we distinguished linking within the project,
within the ecosystem, and across the ecosystem. We used effect cod-
ing [13] to set the contrasts of this three-way factor, i.e., comparing each
level to the grand mean of all three levels.

4 LINKING OUTCOMES
First, to better understand in what way linking to related issues
helps resolve the source issue, we conducted a qualitative study
of 119 pairs of linked, source-target issues. During our manual
analysis, six categories of linking outcomes emerged.
[C1] Closed internally: without obvious help from the linked
information (33.6% of samples). Developers linked to related is-
sues either within the project or across projects, but those links
did not obviously help close the source issue. E.g., in Sample 64
(sass/sass#1212), developer tbremer found what he thought was a
related issue: “I found this related issues that seems to be true for me:
chriseppstein/compass#1488...”. But developer nex3 replied: “This is-
sue is about sourcemap generation, which seems unlikely to be re-
lated...”. Finally, nex3 closed the issue.
[C2] Fixed internally: after collecting useful information from
linked issues (25.2% of samples). Developers found the target is-
sue useful, e.g., a fix already reported in the target repository, or
some useful discussion, both of which can obviously hasten reso-
lution time of the source issue. E.g., in Sample 79 (twbs/bootstrap-
sass#90), developer chrisnicola provided two external links: “There is
a problem that has been happening with...compass/compass-rails#26,
rails/rails#5497”. But the issue’s submitter larryzhao told him that
the two links may not be helpful: “I am not using compass for my
project...”. Then chrisnicola found another fix: “The fix to sass/sass#337
actually fixes this completely for me...”. larryzhao then promptly
fixed his issue.
[C3] Help fix target issue: contribute to fixing link target issues,
in other projects, after which the source issue can be readily fixed
(10.9% of samples). Once developers find that the issue at hand
is actually due to a problem in other projects, they try to repro-
duce it and issue a pull request to fix it, engaging in the type
of altruistic/community behavior that OSS are famous for. E.g.,

4To quantify the ease of a source issue when it arrives, we first computed the mean
resolution latency of unlinked issues and labeled those unlinked issues as “difficult”
if their latencies are longer than the mean value, otherwise, as “easy”. Next, we joined
each issue’s title and description text into a single text. By using Naive Bayes method,
we trained our classification model on those issue text vectors. Then we gave each
linked issue a predictive label (“difficult” or “easy”), representing the approximate
difficulty that issue report with such text.

15

Within-Ecosystem Issue Linking: A Large-Scale Study of Rails SoftwareMining ’18, September 3, 2018, Montpellier, France

0

2

4

6

0

10

20

30

Figure 2: Resolution cost of different linking outcomes. Left:
resolution latency (days); Right: discussion length.

in Sample 35, developer timoschilling commented: “This couldn’t
be resolved by ActiveAdmin, it[s] a Ransack bug like activerecord-
hackery/ransack#449...” and he reported the issue to the Ransack
project. After that, he made a pull request to fix this issue and the
activeadmin/activeadmin issue also get resolved eventually.
[C4] Closed with “not our problem”: wait for a fix in the target
project and do nothing in the source project (10.1% of samples).
When a developer found that an issue is actually due to a problem
in other projects, they dropped it because they did not want to or
could not fix it, or maybe they have time to wait for a fix in the other
projects. E.g., in Sample 7 (rails/rails#11843), developer thibaudgg
found an issue arising from the Squeel project: “...are you using
squeel gem too? I found this issue activerecord-hackery/squeel#265”.
Finally, robin850 said: “...this is issue seems related to Squeel so I’m
giving it a close.” and closed this issue immediately.
[C5] Closed with “won’t fix”: duplicates; not urgent or impor-
tant enough to fix (8.4% of samples). A developer would not fix an
issue because they found this issue was a duplicate or has been al-
ready reported in other projects. Alternatively, the issue maybe was
not urgent or important enough, so they closed it quickly. E.g., in
Sample 73 (travis-ci/travis-ci#6641), developer poplav reported that
he had the same issue in their repository, “We have been running
into these issues the past two days or so...Same as described above”.
And ppires pointed out that “This issue is already open in sbt project:
sbt/sbt#2758”. cotsog closed the issue immediately.
[C6]Closed but continued in a new issue: done for technical rea-
sons or perhaps these are complex issues that require more/renewed
consideration (11.8% of samples). Developers found an issue is a
difficult problem or they have spent a lot of time/resource on it, so
they decided to open a new issue and moved further discussion to
the new issue. E.g., in Sample 67 (caskroom/homebrew-cask#3083),
after a long discussion, vitorgalvao provided a new issue and told
other developers: “We have a lot of text in this issue now, so it’s be-
coming a bit unlikely that new eyes will go through all of it to see the
discussion. There is a new issue where someone is offering to build
this as an addition, so let’s move the conversation there...”.

Further, we compared issue resolution cost of each sample from
this qualitative study. Figure 2 shows the comparison boxplots.
We find that different linking outcomes may have different effects
on issue resolution. E.g., issues from C1 need an average of 165.7
days (median: 83.8) to be closed, higher than the average latency of
70.7 days (median: 19.4) in C2 (Wilcoxon test; p=0.029). This is as
expected, since having useful links may help. But it also indicates
that there may be many false starts when searching related issues.
5activeadmin/activeadmin#3426

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

1 2 3 4 5 6 7 8 9 1011121314151617181920
Time periods

Figure 3: Left: Violin plots of the 3 different link types fre-
quency distributions. Right: Links entropy, over time. Hor-
izontal lines in boxplots: medians. Dotted horizontal line:
overallmedian. Red dashed line: slope of themedians’ slope.

When developers link, there are different linking outcomes and
they may have different effects on issue resolution.

However, the possible developer linking practices that can lead to
the different linking outcomes have not been validated through ex-
tensive quantitative studies. We characterize them in our Research
Trust 1 (see §5). Also, those linking practices may have different
effects on issue resolution. We investigate them in our Research
Trust 2 (see §6).

5 RT1: LINKING PRACTICES
5.1 RQ1-1: Linking Contributions.
To find where developers link to more, we calculated the frequency
of the 3 types of links (P : within-project links; E: within-ecosystem
links; andC: cross-ecosystem links) that each developer contributed.
We ranked all linking developers based on their total number of
links contributed. Then we selected 1,703 developers who con-
tributed more than 30 links each. We labeled each of their links as
one of {P ,E,C}. Then, for each developer, we separately calculated
the percentage of each of the 3 types of links. Figure 3, left, shows
violin plots of the link frequency distribution of the 3 types of links.

On average, 71.6% of links that each developer contributed were
within-project links (median: 77.9%), 22.4% of links were within-
ecosystem links (median: 16.1%), and 5.9% of links were cross-
ecosystem links (median: 3.0%). We find that, developers tend to link
to more within-project resources, then within-ecosystem resources,
and lastly cross-ecosystem resources. We also analyzed the distri-
bution of developers’ code contribution, i.e. the proportion of their
effort (via the number of commits) that is within the ecosystem.
We find that on average, 64.7% of each developer’s contribution is
within the ecosystem (median: 66.7%). Thus,

Developers tend to work within the ecosystem, consistent with
their linking practices, i.e., mostly linking to within-project and
within-ecosystem resources.

5.2 RQ1-2: Evolution of Linking Practices.
It is reasonable to hypothesize that, over time, developers learn to
link to related issues not just inside their project but also to other
projects, both within an ecosystem and externally, so long as the
linking is gainful. We next investigate this. Specifically, we ask if
developers tend to increase the diversity of the types of projects
they link to over time.

16

SoftwareMining ’18, September 3, 2018, Montpellier, France Zhang, Yu, Wang, Vasilescu, and Filkov

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 1011121314151617181920
Time periods

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 1011121314151617181920
Time periods

Figure 4: Left: The entropy evolution in within-project links
and within-ecosystem links. Right: The entropy evolution
in within-project links and cross-ecosystem links.

To assess the change in link type diversity, we selected the top-
500 linking actors among all linking developers. Each of them con-
tributed more than 150 links. For each developer d, we sorted all
of his/her links based on their creation time. Each link has a type,
one of {P ,E,C}. We divided d’s time from first to last link into 20
equal time periods, each corresponding to successive 5% intervals
of their linking tenure. We used Shannon entropy to measure the
link type diversity. If Li j is the number of j-type (j ∈ [1, 3]) links
that developer d contributed in the i-th (i ∈ [1, 20]) time period and
Li is the total number of links that d contributed in the i-th time
period, then we define the links entropy of developer d in the i-th
time period as: −

∑3
j=1

(
Li j
Li

)
× loд2

(
Li j
Li

)
.

Figure 3, right, shows the entropy changes over time of the dif-
ferent types of target projects (within-project, within-ecosystem,
and cross-ecosystem). We observed that there is an upward trend
in the entropy values over time, as the entropy values change from
the 0 to 0.30, with some variability. This is consistent with a pos-
itive answer to our question, suggesting developers learn to link
more broadly, linking outside of the project when no within-project
related issues are apparent. Thus, with time, the developers’ linking
tends to shift from single to multiple link types.

Further, we separately looked at the induced sequences of just
two types of links, (1) onlywithin-project links andwithin-ecosystem
links, and (2) only within-project links and cross-ecosystem links.
Shown in Figure 4, we observed that in the former case, there is a
slight upward trend in the entropy medians per period. In the latter
case, the entropy values have large variance and no obvious trend
(the median of each time period is 0). Thus,

Although developers tend to link to a broader set of project types
over time, linking to resources in the same ecosystem dominates
over linking to resources outside of the ecosystem.

6 RT2: LINKING AND ISSUE RESOLUTION
6.1 RQ2-1: Issue Resolution Latency.
We developed the Resolution latency model for investigating the
relationship between issue resolution latency and link properties.
Table 2 shows the modeling result. We can see that this model
achieves a good fit (R2=54.3%).

We find that, a one-unit increase in hasLabel, results in the
increase in issue resolution latency of 27.5%, holding all other vari-
ables constant. This is consistent with Cabot et al. [4], who found

Table 2: Resolution latency model. The response is
log(issueLatency). R2=0.54.

Coeffs (Error) Sum Sq.

(Intercept) -0.1328 (0.0096)***
log(nComments+0.5) 0.0079 (0.0038)* 6,719.6***
log(teamSize+0.5) -0.0587 (0.0031)*** 384.9***
log(nIssues+0.5) -0.0663 (0.0031)*** 56.7***
uContributorTURE 0.1316 (0.0060)*** 399.7***
log(textLen) 0.0115 (0.0028)*** 24.3***
hasAssigneeTRUE 0.0198 (0.0081)* 33.7***
hasLabelTRUE 0.2426 (0.0058)*** 733.0***
hasMilestoneTRUE -0.0183 (0.0072)* 10.7***
isDifficultTRUE 0.2742 (0.0176)*** 111.0***
nActors 0.0509 (0.0035)*** 280.1***
ratioM -0.0904 (0.0033)*** 2.2*
ratioCM 0.0225 (0.0031)*** 729.0***
ratioCL -0.0688 (0.0030)*** 113.9***
ratioCML -0.2460 (0.0036)*** 2,094.9***
log(linkLatency+0.5) 0.6180 (0.0029)*** 25,435.1***
linkClosedTURE 0.0362 (0.0092)*** 5.2***
linkPRTRUE -0.0826 (0.0061)*** 162.4***
log(linkTextLen) 0.0334 (0.0030)*** 77.8***
textSim -0.0217 (0.0028)*** 43.0***
linkPlace=within-project -0.0265 (0.0050)*** 14.8***
linkPlace=within-ecosystem 0.0324 (0.0076)*** 14.8***
linkPlace=cross-ecosystem -0.0059 (0.0068)
***p < 0.001, **p < 0.01, *p < 0.05

that on average it might cost more time to solve those labeled is-
sues. nActors has a significant positive effect. This is consistent
with the notion that difficult issues may require more participants.
But it also indicates that having many developers involved in issue
resolution may be counterproductive. All of the fine-grained involve-
ment variables have significant effects on issue resolution latency,
but differ among each other. Holding other variables constant, a
one-unit increase in ratioCL corresponds to a decrease in issue
resolution latency of 6.6%; a one-unit increase in ratioCML results
in a decrease in issue resolution latency of 21.8%, holding all other
variables constant. Thus, a developer’s increased participation in
other involvement activities, especially linking, may decrease issue
resolution latency.

The linking-related factors are highly significant and cover nearly
68.8% of the variance explained. Specifically, the linkLatency is
significant and has the most sizeable and positive effect on issue res-
olution latency. Thus, faster linking, faster issue resolving. linkPR
has a significant, negative effect. This can be explained by that link-
ing to a pull request may bring fix codes. textSim has a significant,
negative effect. For one unit increase, the outcome decreases by
2.1%, holding other variables constant. However, we find that com-
pared to the overall mean of all types of links (linkPlace), linking
across projects (within-ecosystem or cross-ecosystem) has a negli-
gible effect on issue resolution latency (only 0.04% of the variance
explained). Thus,

We find no evidence that linking across projects has an effect on
issue resolution.

6.2 RQ2-2: Issue Discussion Length.
Next, we analyzed the effect of linking on the length of the issue
discussion, i.e., the number of comments. Table 3 shows the Discus-
sion length model summary. The model has a good fit to the data
(R2=52.9%).

We see that, a one-unit increase in hasLabel, results in the in-
crease in discussion length of 11.8%, holding all other variables
constant. The developer involvement factors are significant and

17

Within-Ecosystem Issue Linking: A Large-Scale Study of Rails SoftwareMining ’18, September 3, 2018, Montpellier, France

Table 3: Discussion length model. The response is
log(nComments). R2=0.53.

Coeffs (Error) Sum Sq.

(Intercept) -0.0456 (0.0097)***
log(teamSize+0.5) 0.0147 (0.0031)*** 937***
log(nIssues+0.5) -0.0033 (0.0031) 48***
uContributorTURE -0.1302 (0.0060)*** 1,114***
log(textLen) 0.1051 (0.0028)*** 1,819***
hasAssigneeTRUE 0.1141 (0.0082)*** 107***
hasLabelTRUE 0.1113 (0.0059)*** 253***
hasMilestoneTRUE 0.1481 (0.0073)*** 145***
isDifficultTRUE -0.1210 (0.0178)*** 22***
nActors 0.4976 (0.0030)*** 17,681***
ratioM -0.3420 (0.0031)*** 4,825***
ratioCM -0.0527 (0.0031)*** 31***
ratioCL 0.0131 (0.0030)*** 566***
ratioCML -0.2069 (0.0036)*** 1,584***
log(linkLatency+0.5) 0.0979 (0.0029)*** 6,440***
linkClosedTURE 0.0633 (0.0093)*** 148***
linkPRTRUE 0.0002 (0.0062) 1
log(linkTextLen) 0.0239 (0.0031)*** 48***
textSim -0.0662 (0.0028)*** 629***
linkPlace=within-project -0.0789 (0.0050)*** 121***
linkPlace=within-ecosystem 0.0327 (0.0077)*** 121***
linkPlace=cross-ecosystem 0.0462 (0.0069)***
***p < 0.001, **p < 0.01, *p < 0.05

cover nearly 67.6% of the variance explained. All of the fine-grained
involvement variables that relate to management activities have
significant negative effects. Thus, the higher the percentage of devel-
opers involved in management activities, the shorter the discussion.

The linking-related factors are significant and cover nearly 20.2%
of the variance explained. Specifically, linkLatency has a signif-
icant positive effect on issue discussion length. A 10% increase
to link latency has the effect of increasing discussion length by
0.9%, holding all other variables constant. Linking to a closed issue
has a significant positive effect on the discussion. For a one-unit
increase in linkClosed, the expected increase in the discussion
length is 6.5%, holding other variables constant. Compared to the
overall mean across all types of links (linkPlace), linking within
the project has a significant negative effect on discussion length,
while linking across projects (within-ecosystem or cross-ecosystem)
has a significant positive effect. The coefficients show that linking
across the ecosystem has a higher effect than linking within the
ecosystem, holding other variables constant. This is consistent with
the notion that developers tend to discuss issues more if the needed
resources are not within their projects.

Linking across projects is associated with longer developer dis-
cussion.

7 DISCUSSION
7.1 Implications
For researchers. We found that, due to the interrelationships be-
tween the projects in the same ecosystem, developers tend to work
within the ecosystem (§5.1), which may also affect their linking
practices (§4, §5.2) and issue resolution (§6). Thus, our study mo-
tivates the need for considering ecosystem level research as soon
as practicable, perhaps at the same time as a within project re-
lated issue research is being conducted. Our regression modeling
results showed that factors related to linking, e.g., target issue’s
type and state, are associated with issue resolution outcomes (§6).
Whether this association is causal and how the issue resolution is

affected by other linking-related factors should be further empiri-
cally evaluated, as improvements to issue resolution efficiency can
have immediate practical impact.

For developers. Our study showed that an increase in the amount
of linking activities is associated with a decrease in issue resolution
latency (§6.1). Thus, developers may benefit from participating
in more linking activities. We found that having many developers
involved in issue resolution may be counterproductive (§6), perhaps
due to the overhead in communication or due to the tragedy of
the commons phenomenon. Smaller, more cohesive groups may be
more effective for this task, although how that can be achieved is
not clear. Efforts to enhance the bug tossing and triaging processes
by making them ecosystem-aware may also help, and could be a
direction for further study. We did not find evidence that linking
across projects is associated with longer issue resolution latency
(§6.1). Therefore, developers should not harbor the preconception
that linking across projects will retard issue resolution.

For tool builders. Our study found that linking across projects
is associated with more discussion compared to linking within
the same project (§6.2). Tool support for effective linking within
the ecosystem (ecosystem-level bug triaging tool) to get better
ecosystem awareness may aid with longer discussions. We also
found that labeling issues may be counterproductive (§6), as was
found in some prior studies [4], although not in others [20]. Perhaps
labels are often too short and too precise, and thus will not show
up in broader searches, which most of the initial searches are like.
Free form, unstructured descriptions may be more compatible with
modern search technologies, and could be used in parallel with
labels.

7.2 Threats to Validity
Clearly, our operationalization of the Rails ecosystem is just an
approximation. It is based on a single recent snapshot of the is-
sue report interdependencies in Rails and may change slightly if
computed at a different time; moreover, it gives more weight to
older projects, that likely have more issues and, therefore, more
chances of being included. However, besides being computation-
ally tractable, this operationalization does enable us to reasonably
distinguish between projects that are closer and farther from the
Rails core, which we expect may play different roles in the issue
resolution process, e.g., as developers may be differently aware of
activity therein.

In our data, we have filtered out some copies of issues and ill
formed links, however there still were some abnormal issues present
that contain a few simple modifications but have a long resolution
time. This may lead to some bias in our study.

8 RELATEDWORK
8.1 Software Ecosystems
Source code forges, especially social coding platforms like GitHub,
have been steadily changing Open Source Software (OSS) devel-
opment. Over time, research emphasis of code repositories has
shifted from single projects to complex software ecosystems in
which projects are developed and co-evolve with each other. Still,
developers increasingly participate in multiple projects [21] and

18

SoftwareMining ’18, September 3, 2018, Montpellier, France Zhang, Yu, Wang, Vasilescu, and Filkov

move across projects in the ecosystem with relative ease [16]. This
has also affected issue management: to realize and achieve indi-
vidual project goals it is often necessary to properly manage the
contextual interaction of tasks, activities, and interdependencies
across multiple projects [7]. While the existing literature helps re-
searchers and software practitioners gain a deeper understanding
of software ecosystems, few studies have investigated cross-project
issue linking practices, the only exception being the study by Ma et
al. [18]. In that paper, the authors report on a small empirical study
of cross-project correlated bugs in the scientific Python ecosys-
tem. Their study was based on a manual inspection of 271 pairs
of cross-project bugs and an online survey with 116 respondents.
They focused on cross-project root causes for tracking and coordi-
nation between the upstream and downstream projects during bug
fixes. Our work here is substantially different in two aspects. First,
we consider a comprehensive set of issues in the Rails ecosystem,
several orders of magnitude larger than theirs, enabling powerful
quantitative modeling. Second, our goal is different, as we aim to un-
derstand the effects of common linking practices in the ecosystem
on issue resolution.

8.2 Bug Fixing and Triaging
Bug fixing is a complex, iterative, and time-consuming process that
involves the entire developer community and thus poses particular
coordination problems [11]. The existing characterization of bug
fixing is predominantly based on studies of large individual projects,
i.e., how to help developers better automatically resolve the within-
project bug reports [15]. However, these characterizations may
be insufficient in light of recent changes, because bug fixing can
be propagated from one system to the other to share information
about related bugs, i.e., cross-system bug fixing [5]. Boisselle et
al. [3] found that developers lose a median of 47 days of potential
collaboration and users lose 38 days waiting for fixes already made
in other distributions. Furthermore, in a recent paper, Zampetti
et al. [22] investigated how developers document pull requests in
GitHub with external references (Q&A forums, code examples, etc.).
They found that even though external resources can be useful to
learn something new or to solve specific problems, they are still
rarely referred. These challenges prompted us to conduct a study
of how cross-linking practices affect issue resolution latency in a
large ecosystem.

9 CONCLUSION
Here we have studied ecosystem issue linking using qualitative and
quantitative analyses of linking practices in the Rails ecosystem.
Our qualitative study results indicate that there are varied linking
outcomes and they may have different effects on issue resolution.
Our quantitative study results find that developers show more
diversity in linking practices by referencing more cross-project or
cross-ecosystem issues over time. Interestingly, in contrast with
prior work, we do not find evidence that linking across projects
affects resolution latency, but we do find that it is associated with
more discussion. Some possible reasons for that difference are: a)
our study is based on much more data than the prior study, b)
our methods included controls for various effects while the other

study did not, and c) the prior study had done a manual selection
of cross-linked bugs whereas ours was more automatic.

ACKNOWLEDGMENTS
The bulk of this work was produced while the first author was
visiting DECAL at UC Davis. We thank members of DECAL for
their comments and directions on this research. We also thank
the anonymous reviewers for their valuable comments on earlier
versions of this paper. This work was supported by National Natural
Science Foundation of China (Grant No. 61502512 and 61432020),
and China Scholarship Council.

REFERENCES
[1] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a

practical and powerful approach to multiple testing. Journal of the royal statistical
society. Series B (Methodological) (1995), 289–300.

[2] Kelly Blincoe, Francis Harrison, and Daniela Damian. 2015. Ecosystems in GitHub
and a method for ecosystem identification using reference coupling. InMSR. IEEE,
202–207.

[3] Vincent Boisselle and Bram Adams. 2015. The impact of cross-distribution bug
duplicates, empirical study on Debian and Ubuntu. In SCAM. IEEE, 131–140.

[4] Jordi Cabot, Javier Luis Cánovas Izquierdo, Valerio Cosentino, and Belén Rolandi.
2015. Exploring the use of labels to categorize issues in open-source software
projects. In SANER. IEEE, 550–554.

[5] Gerardo Canfora, Luigi Cerulo, Marta Cimitile, and Massimiliano Di Penta. 2011.
Social interactions around cross-system bug fixings: the case of FreeBSD and
OpenBSD. In MSR. ACM, 143–152.

[6] Marcelo Cataldo and James D Herbsleb. 2013. Coordination breakdowns and their
impact on development productivity and software failures. IEEE Transactions on
Software Engineering 39, 3 (2013), 343–360.

[7] Cecil Eng Huang Chua and Adrian Yong Kwang Yeow. 2010. Artifacts, actors,
and interactions in the cross-project coordination practices of open-source com-
munities. Journal of the Association for Information Systems 11, 12 (2010), 838.

[8] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. 2013. Applied
multiple regression/correlation analysis for the behavioral sciences.

[9] Eleni Constantinou and Tom Mens. 2016. Social and technical evolution of
software ecosystems: a case study of Rails. In European Conference on Software
Architecture Workshops. ACM, 23–26.

[10] Juliet Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures,
canons and evaluative criteria. Zeitschrift für Soziologie 19, 6 (1990), 418–427.

[11] Kevin Crowston and Barbara Scozzi. 2008. Bug fixing practices within free/libre
open source software development teams. (2008).

[12] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from
here, some from there: cross-project code reuse in GitHub. InMSR. IEEE, 291–301.

[13] Alkharusi H. 2012. Categorical variables in regression analysis: A comparison of
dummy and effect coding. International Journal of Education 4, 2 (2012), 202–210.

[14] James Herbsleb, Christian Kästner, and Christopher Bogart. 2016. Intelligently
Transparent Software Ecosystems. IEEE Software 33, 1 (2016), 89–96.

[15] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving bug
triage with bug tossing graphs. In ESEC/FSE. ACM, 111–120.

[16] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. 2011. The onion patch:
migration in open source ecosystems. In ESEC/FSE. ACM, 70–80.

[17] Mircea Lungu, Romain Robbes, andMichele Lanza. 2010. Recovering Inter-project
Dependencies in Software Ecosystems. In ASE. ACM, 309–312.

[18] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen Xu.
2017. How do developers fix cross-project correlated bugs?: A case study on the
GitHub scientific Python ecosystem. In ICSE. IEEE, 381–392.

[19] Christina Manteli, Bart van den Hooff, Hans van Vliet, andWilco van Duinkerken.
2014. Overcoming challenges in global software development: The role of brokers.
In RCIS. IEEE, 1–9.

[20] Margaret-Anne Storey, Christoph Treude, Arie van Deursen, and Li-Te Cheng.
2010. The impact of social media on software engineering practices and tools. In
FoSER. ACM, 359–364.

[21] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian,
Premkumar Devanbu, and Vladimir Filkov. 2016. The sky is not the limit: Multi-
tasking across GitHub projects. In ICSE. ACM, 994–1005.

[22] Fiorella Zampetti, Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano
Di Penta, and Michele Lanza. 2017. How developers document pull requests with
external references. In ICPC. IEEE, 23–33.

19

	Abstract
	1 Introduction
	2 Research Questions
	3 Methods
	3.1 Definition of the Rails Ecosystem
	3.2 Data Set
	3.3 Qualitative Analysis
	3.4 Quantitative Analyses

	4 Linking outcomes
	5 RT1: Linking Practices
	5.1 RQ1-1: Linking Contributions.
	5.2 RQ1-2: Evolution of Linking Practices.

	6 RT2: Linking and Issue Resolution
	6.1 RQ2-1: Issue Resolution Latency.
	6.2 RQ2-2: Issue Discussion Length.

	7 Discussion
	7.1 Implications
	7.2 Threats to Validity

	8 Related Work
	8.1 Software Ecosystems
	8.2 Bug Fixing and Triaging

	9 Conclusion
	Acknowledgments
	References

